No description
Find a file
2022-12-29 14:58:03 +01:00
.github Start export implementation (#110) 2022-12-29 14:17:14 +01:00
docs Rename img_size to imgsz (#86) 2022-12-24 00:39:09 +01:00
tests Start export implementation (#110) 2022-12-29 14:17:14 +01:00
ultralytics Import DEFAULT_CONFIG from utils/__init__.py (#115) 2022-12-29 14:58:03 +01:00
.gitignore Integration of v8 segmentation (#107) 2022-12-28 16:01:38 +01:00
.pre-commit-config.yaml DDP and new dataloader Fix (#95) 2022-12-26 15:35:49 +01:00
CITATION.cff Fix CITATION.cff typos (#64) 2022-12-05 12:17:25 -08:00
CONTRIBUTING.md docs setup (#61) 2022-12-05 06:04:57 +05:30
LICENSE Initial commit 2022-09-11 19:39:46 +03:00
MANIFEST.in Trainer + Dataloaders (#27) 2022-10-10 14:01:07 +02:00
mkdocs.yml Update docs (#71) 2022-12-12 09:21:00 +05:30
README.md Make YOLO a module (#111) 2022-12-28 19:38:37 +01:00
requirements.txt Allocated updated pycocotools metrics fix (#101) 2022-12-27 15:49:13 +01:00
setup.cfg Flake8 updates (#66) 2022-12-06 15:09:53 -08:00
setup.py docs setup (#61) 2022-12-05 06:04:57 +05:30

Ultralytics CI

Install

pip install ultralytics

Development

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

Usage

1. CLI

To simply use the latest Ultralytics YOLO models

yolo task=detect    mode=train     model=yolov8n.yaml ...
          classify       predict         yolov8n-cls.yaml
          segment        val             yolov8n-seg.yaml

2. Python SDK

To use pythonic interface of Ultralytics YOLO model

from ultralytics import YOLO

model = YOLO.new('yolov8n.yaml')  # create a new model from scratch
model = YOLO.load('yolov8n.pt')  # load a pretrained model (recommended for best training results)

results = model.train(data='coco128.yaml', epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source='bus.jpg')
success = model.export(format='onnx')

If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.