ultralytics-ascend/ultralytics/yolo/v8/classify/train.py
Ayush Chaurasia 1054819a59
Add initial model interface (#30)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2022-10-25 21:51:15 +02:00

82 lines
3.3 KiB
Python

import subprocess
import time
from pathlib import Path
import hydra
import torch
import torchvision
from ultralytics.yolo import v8
from ultralytics.yolo.data import build_classification_dataloader
from ultralytics.yolo.engine.trainer import CONFIG_PATH_ABS, DEFAULT_CONFIG, BaseTrainer
from ultralytics.yolo.utils.downloads import download
from ultralytics.yolo.utils.files import WorkingDirectory
from ultralytics.yolo.utils.torch_utils import LOCAL_RANK, torch_distributed_zero_first
# BaseTrainer python usage
class ClassificationTrainer(BaseTrainer):
def get_dataset(self, dataset):
# temporary solution. Replace with new ultralytics.yolo.ClassificationDataset module
data = Path("datasets") / dataset
with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(Path.cwd()):
data_dir = data if data.is_dir() else (Path.cwd() / data)
if not data_dir.is_dir():
self.console.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if str(data) == 'imagenet':
subprocess.run(f"bash {v8.ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
# TODO: add colorstr
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {'bold', data_dir}\n"
self.console.info(s)
train_set = data_dir / "train"
test_set = data_dir / 'test' if (data_dir / 'test').exists() else data_dir / 'val' # data/test or data/val
return train_set, test_set
def get_dataloader(self, dataset_path, batch_size=None, rank=0):
return build_classification_dataloader(path=dataset_path, batch_size=self.args.batch_size, rank=rank)
def get_model(self, model, pretrained):
# temp. minimal. only supports torchvision models
model = self.args.model
if model in torchvision.models.__dict__: # TorchVision models i.e. resnet50, efficientnet_b0
model = torchvision.models.__dict__[model](weights='IMAGENET1K_V1' if pretrained else None)
else:
raise ModuleNotFoundError(f'--model {model} not found.')
for m in model.modules():
if not pretrained and hasattr(m, 'reset_parameters'):
m.reset_parameters()
for p in model.parameters():
p.requires_grad = True # for training
return model
def get_validator(self):
return v8.classify.ClassificationValidator(self.test_loader, self.device, logger=self.console)
def criterion(self, preds, targets):
return torch.nn.functional.cross_entropy(preds, targets)
@hydra.main(version_base=None, config_path=CONFIG_PATH_ABS, config_name=str(DEFAULT_CONFIG).split(".")[0])
def train(cfg):
cfg.model = cfg.model or "squeezenet1_0"
cfg.data = cfg.data or "imagenette" # or yolo.ClassificationDataset("mnist")
trainer = ClassificationTrainer(cfg)
trainer.train()
if __name__ == "__main__":
"""
CLI usage:
python ../path/to/train.py args.epochs=10 args.project="name" hyps.lr0=0.1
TODO:
Direct cli support, i.e, yolov8 classify_train args.epochs 10
"""
train()