Signed-off-by: Mohammed Yasin <32206511+Y-T-G@users.noreply.github.com> Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
74 lines
3.3 KiB
Python
74 lines
3.3 KiB
Python
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
|
|
from ultralytics.engine.results import Results
|
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
|
from ultralytics.utils import DEFAULT_CFG, ops
|
|
|
|
|
|
class SegmentationPredictor(DetectionPredictor):
|
|
"""
|
|
A class extending the DetectionPredictor class for prediction based on a segmentation model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils import ASSETS
|
|
from ultralytics.models.yolo.segment import SegmentationPredictor
|
|
|
|
args = dict(model="yolo11n-seg.pt", source=ASSETS)
|
|
predictor = SegmentationPredictor(overrides=args)
|
|
predictor.predict_cli()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
"""Initializes the SegmentationPredictor with the provided configuration, overrides, and callbacks."""
|
|
super().__init__(cfg, overrides, _callbacks)
|
|
self.args.task = "segment"
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
"""Applies non-max suppression and processes detections for each image in an input batch."""
|
|
# tuple if PyTorch model or array if exported
|
|
protos = preds[1][-1] if isinstance(preds[1], tuple) else preds[1]
|
|
return super().postprocess(preds[0], img, orig_imgs, protos=protos)
|
|
|
|
def construct_results(self, preds, img, orig_imgs, protos):
|
|
"""
|
|
Constructs a list of result objects from the predictions.
|
|
|
|
Args:
|
|
preds (List[torch.Tensor]): List of predicted bounding boxes, scores, and masks.
|
|
img (torch.Tensor): The image after preprocessing.
|
|
orig_imgs (List[np.ndarray]): List of original images before preprocessing.
|
|
protos (List[torch.Tensor]): List of prototype masks.
|
|
|
|
Returns:
|
|
(list): List of result objects containing the original images, image paths, class names, bounding boxes, and masks.
|
|
"""
|
|
return [
|
|
self.construct_result(pred, img, orig_img, img_path, proto)
|
|
for pred, orig_img, img_path, proto in zip(preds, orig_imgs, self.batch[0], protos)
|
|
]
|
|
|
|
def construct_result(self, pred, img, orig_img, img_path, proto):
|
|
"""
|
|
Constructs the result object from the prediction.
|
|
|
|
Args:
|
|
pred (np.ndarray): The predicted bounding boxes, scores, and masks.
|
|
img (torch.Tensor): The image after preprocessing.
|
|
orig_img (np.ndarray): The original image before preprocessing.
|
|
img_path (str): The path to the original image.
|
|
proto (torch.Tensor): The prototype masks.
|
|
|
|
Returns:
|
|
(Results): The result object containing the original image, image path, class names, bounding boxes, and masks.
|
|
"""
|
|
if not len(pred): # save empty boxes
|
|
masks = None
|
|
elif self.args.retina_masks:
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
|
masks = ops.process_mask_native(proto, pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
|
|
else:
|
|
masks = ops.process_mask(proto, pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
|
|
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
|
return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)
|