# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, LOGGER, ops class PosePredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on a pose model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.pose import PosePredictor args = dict(model="yolo11n-pose.pt", source=ASSETS) predictor = PosePredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initializes PosePredictor, sets task to 'pose' and logs a warning for using 'mps' as device.""" super().__init__(cfg, overrides, _callbacks) self.args.task = "pose" if isinstance(self.args.device, str) and self.args.device.lower() == "mps": LOGGER.warning( "WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. " "See https://github.com/ultralytics/ultralytics/issues/4031." ) def construct_result(self, pred, img, orig_img, img_path): """ Constructs the result object from the prediction. Args: pred (torch.Tensor): The predicted bounding boxes, scores, and keypoints. img (torch.Tensor): The image after preprocessing. orig_img (np.ndarray): The original image before preprocessing. img_path (str): The path to the original image. Returns: (Results): The result object containing the original image, image path, class names, bounding boxes, and keypoints. """ result = super().construct_result(pred, img, orig_img, img_path) pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape) result.update(keypoints=pred_kpts) return result