# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license from ultralytics.engine.predictor import BasePredictor from ultralytics.engine.results import Results from ultralytics.utils import ops class DetectionPredictor(BasePredictor): """ A class extending the BasePredictor class for prediction based on a detection model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.detect import DetectionPredictor args = dict(model="yolo11n.pt", source=ASSETS) predictor = DetectionPredictor(overrides=args) predictor.predict_cli() ``` """ def postprocess(self, preds, img, orig_imgs, **kwargs): """Post-processes predictions and returns a list of Results objects.""" preds = ops.non_max_suppression( preds, self.args.conf, self.args.iou, self.args.classes, self.args.agnostic_nms, max_det=self.args.max_det, nc=len(self.model.names), end2end=getattr(self.model, "end2end", False), rotated=self.args.task == "obb", ) if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) return self.construct_results(preds, img, orig_imgs, **kwargs) def construct_results(self, preds, img, orig_imgs): """ Constructs a list of result objects from the predictions. Args: preds (List[torch.Tensor]): List of predicted bounding boxes and scores. img (torch.Tensor): The image after preprocessing. orig_imgs (List[np.ndarray]): List of original images before preprocessing. Returns: (list): List of result objects containing the original images, image paths, class names, and bounding boxes. """ return [ self.construct_result(pred, img, orig_img, img_path) for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]) ] def construct_result(self, pred, img, orig_img, img_path): """ Constructs the result object from the prediction. Args: pred (torch.Tensor): The predicted bounding boxes and scores. img (torch.Tensor): The image after preprocessing. orig_img (np.ndarray): The original image before preprocessing. img_path (str): The path to the original image. Returns: (Results): The result object containing the original image, image path, class names, and bounding boxes. """ pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) return Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6])