# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license import torch from ultralytics.engine.results import Results from ultralytics.models.yolo.detect.predict import DetectionPredictor from ultralytics.utils import DEFAULT_CFG, ops class OBBPredictor(DetectionPredictor): """ A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model. Example: ```python from ultralytics.utils import ASSETS from ultralytics.models.yolo.obb import OBBPredictor args = dict(model="yolo11n-obb.pt", source=ASSETS) predictor = OBBPredictor(overrides=args) predictor.predict_cli() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initializes OBBPredictor with optional model and data configuration overrides.""" super().__init__(cfg, overrides, _callbacks) self.args.task = "obb" def construct_result(self, pred, img, orig_img, img_path): """ Constructs the result object from the prediction. Args: pred (torch.Tensor): The predicted bounding boxes, scores, and rotation angles. img (torch.Tensor): The image after preprocessing. orig_img (np.ndarray): The original image before preprocessing. img_path (str): The path to the original image. Returns: (Results): The result object containing the original image, image path, class names, and oriented bounding boxes. """ rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1)) rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True) obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1) return Results(orig_img, path=img_path, names=self.model.names, obb=obb)