# Ultralytics YOLO 🚀, AGPL-3.0 license from collections import defaultdict from time import time import cv2 import numpy as np from ultralytics.utils.checks import check_imshow from ultralytics.utils.plotting import Annotator, colors class SpeedEstimator: """A class to estimate the speed of objects in a real-time video stream based on their tracks.""" def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, spdl_dist_thresh=10): """ Initializes the SpeedEstimator with the given parameters. Args: names (dict): Dictionary of class names. reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)]. view_img (bool, optional): Whether to display the image with annotations. Defaults to False. line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2. spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10. """ # Region information self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)] self.names = names # Classes names # Tracking information self.trk_history = defaultdict(list) self.view_img = view_img # bool for displaying inference self.tf = line_thickness # line thickness for annotator self.spd = {} # set for speed data self.trkd_ids = [] # list for already speed_estimated and tracked ID's self.spdl = spdl_dist_thresh # Speed line distance threshold self.trk_pt = {} # set for tracks previous time self.trk_pp = {} # set for tracks previous point # Check if the environment supports imshow self.env_check = check_imshow(warn=True) def estimate_speed(self, im0, tracks): """ Estimates the speed of objects based on tracking data. Args: im0 (ndarray): Image. tracks (list): List of tracks obtained from the object tracking process. Returns: (ndarray): The image with annotated boxes and tracks. """ if tracks[0].boxes.id is None: return im0 boxes = tracks[0].boxes.xyxy.cpu() clss = tracks[0].boxes.cls.cpu().tolist() t_ids = tracks[0].boxes.id.int().cpu().tolist() annotator = Annotator(im0, line_width=self.tf) annotator.draw_region(reg_pts=self.reg_pts, color=(255, 0, 255), thickness=self.tf * 2) for box, t_id, cls in zip(boxes, t_ids, clss): track = self.trk_history[t_id] bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)) track.append(bbox_center) if len(track) > 30: track.pop(0) trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) if t_id not in self.trk_pt: self.trk_pt[t_id] = 0 speed_label = f"{int(self.spd[t_id])} km/h" if t_id in self.spd else self.names[int(cls)] bbox_color = colors(int(t_id), True) annotator.box_label(box, speed_label, bbox_color) cv2.polylines(im0, [trk_pts], isClosed=False, color=bbox_color, thickness=self.tf) cv2.circle(im0, (int(track[-1][0]), int(track[-1][1])), self.tf * 2, bbox_color, -1) # Calculation of object speed if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]: return if self.reg_pts[1][1] - self.spdl < track[-1][1] < self.reg_pts[1][1] + self.spdl: direction = "known" elif self.reg_pts[0][1] - self.spdl < track[-1][1] < self.reg_pts[0][1] + self.spdl: direction = "known" else: direction = "unknown" if self.trk_pt.get(t_id) != 0 and direction != "unknown" and t_id not in self.trkd_ids: self.trkd_ids.append(t_id) time_difference = time() - self.trk_pt[t_id] if time_difference > 0: self.spd[t_id] = np.abs(track[-1][1] - self.trk_pp[t_id][1]) / time_difference self.trk_pt[t_id] = time() self.trk_pp[t_id] = track[-1] if self.view_img and self.env_check: cv2.imshow("Ultralytics Speed Estimation", im0) if cv2.waitKey(1) & 0xFF == ord("q"): return return im0 if __name__ == "__main__": names = {0: "person", 1: "car"} # example class names speed_estimator = SpeedEstimator(names)