ultralytics 8.2.38 official YOLOv10 support (#13113)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
Burhan 2024-06-20 14:31:48 -04:00 committed by GitHub
parent 821e5fa477
commit ffb46fd7fb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
23 changed files with 785 additions and 32 deletions

View file

@ -5,6 +5,8 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.utils.torch_utils import fuse_conv_and_bn
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
from .transformer import TransformerBlock
@ -39,6 +41,12 @@ __all__ = (
"CBFuse",
"CBLinear",
"Silence",
"RepVGGDW",
"CIB",
"C2fCIB",
"Attention",
"PSA",
"SCDown",
)
@ -699,3 +707,251 @@ class CBFuse(nn.Module):
target_size = xs[-1].shape[2:]
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
return torch.sum(torch.stack(res + xs[-1:]), dim=0)
class RepVGGDW(torch.nn.Module):
"""RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""
def __init__(self, ed) -> None:
super().__init__()
self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
self.dim = ed
self.act = nn.SiLU()
def forward(self, x):
"""
Performs a forward pass of the RepVGGDW block.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after applying the depth wise separable convolution.
"""
return self.act(self.conv(x) + self.conv1(x))
def forward_fuse(self, x):
"""
Performs a forward pass of the RepVGGDW block without fusing the convolutions.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after applying the depth wise separable convolution.
"""
return self.act(self.conv(x))
@torch.no_grad()
def fuse(self):
"""
Fuses the convolutional layers in the RepVGGDW block.
This method fuses the convolutional layers and updates the weights and biases accordingly.
"""
conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
conv_w = conv.weight
conv_b = conv.bias
conv1_w = conv1.weight
conv1_b = conv1.bias
conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])
final_conv_w = conv_w + conv1_w
final_conv_b = conv_b + conv1_b
conv.weight.data.copy_(final_conv_w)
conv.bias.data.copy_(final_conv_b)
self.conv = conv
del self.conv1
class CIB(nn.Module):
"""
Conditional Identity Block (CIB) module.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
"""
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
"""Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = nn.Sequential(
Conv(c1, c1, 3, g=c1),
Conv(c1, 2 * c_, 1),
Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
Conv(2 * c_, c2, 1),
Conv(c2, c2, 3, g=c2),
)
self.add = shortcut and c1 == c2
def forward(self, x):
"""
Forward pass of the CIB module.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
return x + self.cv1(x) if self.add else self.cv1(x)
class C2fCIB(C2f):
"""
C2fCIB class represents a convolutional block with C2f and CIB modules.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
n (int, optional): Number of CIB modules to stack. Defaults to 1.
shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
lk (bool, optional): Whether to use local key connection. Defaults to False.
g (int, optional): Number of groups for grouped convolution. Defaults to 1.
e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
"""
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
"""Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion."""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))
class Attention(nn.Module):
"""
Attention module that performs self-attention on the input tensor.
Args:
dim (int): The input tensor dimension.
num_heads (int): The number of attention heads.
attn_ratio (float): The ratio of the attention key dimension to the head dimension.
Attributes:
num_heads (int): The number of attention heads.
head_dim (int): The dimension of each attention head.
key_dim (int): The dimension of the attention key.
scale (float): The scaling factor for the attention scores.
qkv (Conv): Convolutional layer for computing the query, key, and value.
proj (Conv): Convolutional layer for projecting the attended values.
pe (Conv): Convolutional layer for positional encoding.
"""
def __init__(self, dim, num_heads=8, attn_ratio=0.5):
"""Initializes multi-head attention module with query, key, and value convolutions and positional encoding."""
super().__init__()
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.key_dim = int(self.head_dim * attn_ratio)
self.scale = self.key_dim**-0.5
nh_kd = nh_kd = self.key_dim * num_heads
h = dim + nh_kd * 2
self.qkv = Conv(dim, h, 1, act=False)
self.proj = Conv(dim, dim, 1, act=False)
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
def forward(self, x):
"""
Forward pass of the Attention module.
Args:
x (torch.Tensor): The input tensor.
Returns:
(torch.Tensor): The output tensor after self-attention.
"""
B, C, H, W = x.shape
N = H * W
qkv = self.qkv(x)
q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split(
[self.key_dim, self.key_dim, self.head_dim], dim=2
)
attn = (q.transpose(-2, -1) @ k) * self.scale
attn = attn.softmax(dim=-1)
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
x = self.proj(x)
return x
class PSA(nn.Module):
"""
Position-wise Spatial Attention module.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
e (float): Expansion factor for the intermediate channels. Default is 0.5.
Attributes:
c (int): Number of intermediate channels.
cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
attn (Attention): Attention module for spatial attention.
ffn (nn.Sequential): Feed-forward network module.
"""
def __init__(self, c1, c2, e=0.5):
"""Initializes convolution layers, attention module, and feed-forward network with channel reduction."""
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))
def forward(self, x):
"""
Forward pass of the PSA module.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor.
"""
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = b + self.attn(b)
b = b + self.ffn(b)
return self.cv2(torch.cat((a, b), 1))
class SCDown(nn.Module):
def __init__(self, c1, c2, k, s):
"""
Spatial Channel Downsample (SCDown) module.
Args:
c1 (int): Number of input channels.
c2 (int): Number of output channels.
k (int): Kernel size for the convolutional layer.
s (int): Stride for the convolutional layer.
"""
super().__init__()
self.cv1 = Conv(c1, c2, 1, 1)
self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
def forward(self, x):
"""
Forward pass of the SCDown module.
Args:
x (torch.Tensor): Input tensor.
Returns:
(torch.Tensor): Output tensor after applying the SCDown module.
"""
return self.cv2(self.cv1(x))