Improved Docs models Usage examples (#4214)
This commit is contained in:
parent
9a2c0691e3
commit
ff5fa57415
15 changed files with 420 additions and 223 deletions
|
|
@ -83,33 +83,60 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
|
||||
You can use YOLOv8 for object detection tasks using the Ultralytics pip package. The following is a sample code snippet showing how to use YOLOv8 models for inference:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
!!! example ""
|
||||
|
||||
# Load the model
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model
|
||||
This example provides simple inference code for YOLOv8. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using YOLOv8 with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
|
||||
# Perform inference
|
||||
results = model('image.jpg')
|
||||
=== "Python"
|
||||
|
||||
# Print the results
|
||||
results.print()
|
||||
```
|
||||
PyTorch pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()` class to create a model instance in python:
|
||||
|
||||
## Citation
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a COCO-pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# Display model information (optional)
|
||||
model.info()
|
||||
|
||||
# Train the model on the COCO8 example dataset for 100 epochs
|
||||
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
|
||||
# Run inference with the YOLOv8n model on the 'bus.jpg' image
|
||||
results = model('path/to/bus.jpg')
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
CLI commands are available to directly run the models:
|
||||
|
||||
```bash
|
||||
# Load a COCO-pretrained YOLOv8n model and train it on the COCO8 example dataset for 100 epochs
|
||||
yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640
|
||||
|
||||
# Load a COCO-pretrained YOLOv8n model and run inference on the 'bus.jpg' image
|
||||
yolo predict model=yolov8n.pt source=path/to/bus.jpg
|
||||
```
|
||||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
If you use the YOLOv8 model or any other software from this repository in your work, please cite it using the following format:
|
||||
|
||||
```bibtex
|
||||
@software{yolov8_ultralytics,
|
||||
author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
|
||||
title = {Ultralytics YOLOv8},
|
||||
version = {8.0.0},
|
||||
year = {2023},
|
||||
url = {https://github.com/ultralytics/ultralytics},
|
||||
orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
|
||||
license = {AGPL-3.0}
|
||||
}
|
||||
```
|
||||
!!! note ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@software{yolov8_ultralytics,
|
||||
author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},
|
||||
title = {Ultralytics YOLOv8},
|
||||
version = {8.0.0},
|
||||
year = {2023},
|
||||
url = {https://github.com/ultralytics/ultralytics},
|
||||
orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},
|
||||
license = {AGPL-3.0}
|
||||
}
|
||||
```
|
||||
|
||||
Please note that the DOI is pending and will be added to the citation once it is available. The usage of the software is in accordance with the AGPL-3.0 license.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue