Improved Docs models Usage examples (#4214)

This commit is contained in:
Glenn Jocher 2023-08-07 20:57:35 +02:00 committed by GitHub
parent 9a2c0691e3
commit ff5fa57415
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 420 additions and 223 deletions

View file

@ -1,7 +1,7 @@
---
comments: true
description: Get an overview of YOLOv3, YOLOv3-Ultralytics and YOLOv3u. Learn about their key features, usage, and supported tasks for object detection.
keywords: YOLOv3, YOLOv3-Ultralytics, YOLOv3u, Object Detection, Inferencing, Training, Ultralytics
keywords: YOLOv3, YOLOv3-Ultralytics, YOLOv3u, Object Detection, Inference, Training, Ultralytics
---
# YOLOv3, YOLOv3-Ultralytics, and YOLOv3u
@ -49,32 +49,59 @@ TODO
## Usage
You can use these models for object detection tasks using the Ultralytics YOLOv3 repository. The following is a sample code snippet showing how to use the YOLOv3u model for inference:
You can use YOLOv3 for object detection tasks using the Ultralytics repository. The following is a sample code snippet showing how to use YOLOv3 model for inference:
```python
from ultralytics import YOLO
!!! example ""
# Load the model
model = YOLO('yolov3.pt') # load a pretrained model
This example provides simple inference code for YOLOv3. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using YOLOv3 with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
# Perform inference
results = model('image.jpg')
=== "Python"
# Print the results
results.print()
```
PyTorch pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()` class to create a model instance in python:
## Citations and Acknowledgments
```python
from ultralytics import YOLO
# Load a COCO-pretrained YOLOv3n model
model = YOLO('yolov3n.pt')
# Display model information (optional)
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Run inference with the YOLOv3n model on the 'bus.jpg' image
results = model('path/to/bus.jpg')
```
=== "CLI"
CLI commands are available to directly run the models:
```bash
# Load a COCO-pretrained YOLOv3n model and train it on the COCO8 example dataset for 100 epochs
yolo train model=yolov3n.pt data=coco8.yaml epochs=100 imgsz=640
# Load a COCO-pretrained YOLOv3n model and run inference on the 'bus.jpg' image
yolo predict model=yolov3n.pt source=path/to/bus.jpg
```
## Citations and Acknowledgements
If you use YOLOv3 in your research, please cite the original YOLO papers and the Ultralytics YOLOv3 repository:
```bibtex
@article{redmon2018yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal={arXiv preprint arXiv:1804.02767},
year={2018}
}
```
!!! note ""
=== "BibTeX"
```bibtex
@article{redmon2018yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal={arXiv preprint arXiv:1804.02767},
year={2018}
}
```
Thank you to Joseph Redmon and Ali Farhadi for developing the original YOLOv3.