Improved Docs models Usage examples (#4214)
This commit is contained in:
parent
9a2c0691e3
commit
ff5fa57415
15 changed files with 420 additions and 223 deletions
|
|
@ -1,7 +1,7 @@
|
|||
---
|
||||
comments: true
|
||||
description: Get an overview of YOLOv3, YOLOv3-Ultralytics and YOLOv3u. Learn about their key features, usage, and supported tasks for object detection.
|
||||
keywords: YOLOv3, YOLOv3-Ultralytics, YOLOv3u, Object Detection, Inferencing, Training, Ultralytics
|
||||
keywords: YOLOv3, YOLOv3-Ultralytics, YOLOv3u, Object Detection, Inference, Training, Ultralytics
|
||||
---
|
||||
|
||||
# YOLOv3, YOLOv3-Ultralytics, and YOLOv3u
|
||||
|
|
@ -49,32 +49,59 @@ TODO
|
|||
|
||||
## Usage
|
||||
|
||||
You can use these models for object detection tasks using the Ultralytics YOLOv3 repository. The following is a sample code snippet showing how to use the YOLOv3u model for inference:
|
||||
You can use YOLOv3 for object detection tasks using the Ultralytics repository. The following is a sample code snippet showing how to use YOLOv3 model for inference:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
!!! example ""
|
||||
|
||||
# Load the model
|
||||
model = YOLO('yolov3.pt') # load a pretrained model
|
||||
This example provides simple inference code for YOLOv3. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using YOLOv3 with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
|
||||
# Perform inference
|
||||
results = model('image.jpg')
|
||||
=== "Python"
|
||||
|
||||
# Print the results
|
||||
results.print()
|
||||
```
|
||||
PyTorch pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()` class to create a model instance in python:
|
||||
|
||||
## Citations and Acknowledgments
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a COCO-pretrained YOLOv3n model
|
||||
model = YOLO('yolov3n.pt')
|
||||
|
||||
# Display model information (optional)
|
||||
model.info()
|
||||
|
||||
# Train the model on the COCO8 example dataset for 100 epochs
|
||||
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
|
||||
# Run inference with the YOLOv3n model on the 'bus.jpg' image
|
||||
results = model('path/to/bus.jpg')
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
CLI commands are available to directly run the models:
|
||||
|
||||
```bash
|
||||
# Load a COCO-pretrained YOLOv3n model and train it on the COCO8 example dataset for 100 epochs
|
||||
yolo train model=yolov3n.pt data=coco8.yaml epochs=100 imgsz=640
|
||||
|
||||
# Load a COCO-pretrained YOLOv3n model and run inference on the 'bus.jpg' image
|
||||
yolo predict model=yolov3n.pt source=path/to/bus.jpg
|
||||
```
|
||||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
If you use YOLOv3 in your research, please cite the original YOLO papers and the Ultralytics YOLOv3 repository:
|
||||
|
||||
```bibtex
|
||||
@article{redmon2018yolov3,
|
||||
title={YOLOv3: An Incremental Improvement},
|
||||
author={Redmon, Joseph and Farhadi, Ali},
|
||||
journal={arXiv preprint arXiv:1804.02767},
|
||||
year={2018}
|
||||
}
|
||||
```
|
||||
!!! note ""
|
||||
|
||||
=== "BibTeX"
|
||||
|
||||
```bibtex
|
||||
@article{redmon2018yolov3,
|
||||
title={YOLOv3: An Incremental Improvement},
|
||||
author={Redmon, Joseph and Farhadi, Ali},
|
||||
journal={arXiv preprint arXiv:1804.02767},
|
||||
year={2018}
|
||||
}
|
||||
```
|
||||
|
||||
Thank you to Joseph Redmon and Ali Farhadi for developing the original YOLOv3.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue