Improved Docs models Usage examples (#4214)

This commit is contained in:
Glenn Jocher 2023-08-07 20:57:35 +02:00 committed by GitHub
parent 9a2c0691e3
commit ff5fa57415
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 420 additions and 223 deletions

View file

@ -12,7 +12,7 @@ The MobileSAM paper is now available on [arXiv](https://arxiv.org/pdf/2306.14289
A demonstration of MobileSAM running on a CPU can be accessed at this [demo link](https://huggingface.co/spaces/dhkim2810/MobileSAM). The performance on a Mac i5 CPU takes approximately 3 seconds. On the Hugging Face demo, the interface and lower-performance CPUs contribute to a slower response, but it continues to function effectively.
MobileSAM is implemented in various projects including [Grounding-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything), [AnyLabeling](https://github.com/vietanhdev/anylabeling), and [SegmentAnythingin3D](https://github.com/Jumpat/SegmentAnythingin3D).
MobileSAM is implemented in various projects including [Grounding-SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything), [AnyLabeling](https://github.com/vietanhdev/anylabeling), and [Segment Anything in 3D](https://github.com/Jumpat/SegmentAnythingin3D).
MobileSAM is trained on a single GPU with a 100k dataset (1% of the original images) in less than a day. The code for this training will be made available in the future.
@ -85,15 +85,19 @@ model.predict('ultralytics/assets/zidane.jpg', bboxes=[439, 437, 524, 709])
We have implemented `MobileSAM` and `SAM` using the same API. For more usage information, please see the [SAM page](./sam.md).
### Citing MobileSAM
## Citations and Acknowledgements
If you find MobileSAM useful in your research or development work, please consider citing our paper:
```bibtex
@article{mobile_sam,
title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon},
journal={arXiv preprint arXiv:2306.14289},
year={2023}
}
```
!!! note ""
=== "BibTeX"
```bibtex
@article{mobile_sam,
title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon},
journal={arXiv preprint arXiv:2306.14289},
year={2023}
}
```