Improved Docs models Usage examples (#4214)
This commit is contained in:
parent
9a2c0691e3
commit
ff5fa57415
15 changed files with 420 additions and 223 deletions
|
|
@ -17,32 +17,51 @@ In this documentation, we provide information on four major models:
|
|||
5. [YOLOv7](./yolov7.md): Updated YOLO models released in 2022 by the authors of YOLOv4.
|
||||
6. [YOLOv8](./yolov8.md): The latest version of the YOLO family, featuring enhanced capabilities such as instance segmentation, pose/keypoints estimation, and classification.
|
||||
7. [Segment Anything Model (SAM)](./sam.md): Meta's Segment Anything Model (SAM).
|
||||
7. [Mobile Segment Anything Model (MobileSAM)](./mobile-sam.md): MobileSAM for mobile applications by Kyung Hee University.
|
||||
8. [Fast Segment Anything Model (FastSAM)](./fast-sam.md): FastSAM by Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences.
|
||||
9. [YOLO-NAS](./yolo-nas.md): YOLO Neural Architecture Search (NAS) Models.
|
||||
10. [Realtime Detection Transformers (RT-DETR)](./rtdetr.md): Baidu's PaddlePaddle Realtime Detection Transformer (RT-DETR) models.
|
||||
8. [Mobile Segment Anything Model (MobileSAM)](./mobile-sam.md): MobileSAM for mobile applications by Kyung Hee University.
|
||||
9. [Fast Segment Anything Model (FastSAM)](./fast-sam.md): FastSAM by Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences.
|
||||
10. [YOLO-NAS](./yolo-nas.md): YOLO Neural Architecture Search (NAS) Models.
|
||||
11. [Realtime Detection Transformers (RT-DETR)](./rtdetr.md): Baidu's PaddlePaddle Realtime Detection Transformer (RT-DETR) models.
|
||||
|
||||
You can use many of these models directly in the Command Line Interface (CLI) or in a Python environment. Below are examples of how to use the models with CLI and Python:
|
||||
|
||||
## CLI Example
|
||||
## Usage
|
||||
|
||||
Use the `model` argument to pass a model YAML such as `model=yolov8n.yaml` or a pretrained *.pt file such as `model=yolov8n.pt`
|
||||
You can use RT-DETR for object detection tasks using the `ultralytics` pip package. The following is a sample code snippet showing how to use RT-DETR models for training and inference:
|
||||
|
||||
```bash
|
||||
yolo task=detect mode=train model=yolov8n.pt data=coco128.yaml epochs=100
|
||||
```
|
||||
!!! example ""
|
||||
|
||||
## Python Example
|
||||
This example provides simple inference code for YOLO, SAM and RTDETR models. For more options including handling inference results see [Predict](../modes/predict.md) mode. For using models with additional modes see [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md).
|
||||
|
||||
PyTorch pretrained models as well as model YAML files can also be passed to the `YOLO()`, `SAM()`, `NAS()` and `RTDETR()` classes to create a model instance in python:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
PyTorch pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()`, `SAM()`, `NAS()` and `RTDETR()` classes to create a model instance in python:
|
||||
|
||||
model = YOLO("yolov8n.pt") # load a pretrained YOLOv8n model
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model.info() # display model information
|
||||
model.train(data="coco128.yaml", epochs=100) # train the model
|
||||
```
|
||||
# Load a COCO-pretrained YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# Display model information (optional)
|
||||
model.info()
|
||||
|
||||
# Train the model on the COCO8 example dataset for 100 epochs
|
||||
results model.train(data='coco8.yaml', epochs=100, imgsz=640)
|
||||
|
||||
# Run inference with the YOLOv8n model on the 'bus.jpg' image
|
||||
results = model('path/to/bus.jpg')
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
CLI commands are available to directly run the models:
|
||||
|
||||
```bash
|
||||
# Load a COCO-pretrained YOLOv8n model and train it on the COCO8 example dataset for 100 epochs
|
||||
yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640
|
||||
|
||||
# Load a COCO-pretrained YOLOv8n model and run inference on the 'bus.jpg' image
|
||||
yolo predict model=yolov8n.pt source=path/to/bus.jpg
|
||||
```
|
||||
|
||||
For more details on each model, their supported tasks, modes, and performance, please visit their respective documentation pages linked above.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue