ultralytics 8.0.43 optimized Results class and fixes (#1069)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Alexander Duda <Alexander.Duda@me.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-02-21 20:37:59 +01:00 committed by GitHub
parent f2a7a29e53
commit fe61018975
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
22 changed files with 180 additions and 102 deletions

View file

@ -5,19 +5,24 @@ import math
from pathlib import Path
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sn
import torch
from PIL import Image, ImageDraw, ImageFont
from PIL import __version__ as pil_version
from ultralytics.yolo.utils import LOGGER, threaded
from ultralytics.yolo.utils import LOGGER, TryExcept, threaded
from .checks import check_font, check_version, is_ascii
from .files import increment_path
from .ops import clip_coords, scale_image, xywh2xyxy, xyxy2xywh
matplotlib.rc('font', **{'size': 11})
matplotlib.use('Agg') # for writing to files only
class Colors:
# Ultralytics color palette https://ultralytics.com/
@ -152,6 +157,52 @@ class Annotator:
return np.asarray(self.im)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
def plot_labels(boxes, cls, names=(), save_dir=Path('')):
# plot dataset labels
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
b = boxes.transpose() # classes, boxes
nc = int(cls.max() + 1) # number of classes
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
# seaborn correlogram
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
plt.close()
# matplotlib labels
matplotlib.use('svg') # faster
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
with contextlib.suppress(Exception): # color histogram bars by class
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195
ax[0].set_ylabel('instances')
if 0 < len(names) < 30:
ax[0].set_xticks(range(len(names)))
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10)
else:
ax[0].set_xlabel('classes')
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
# rectangles
boxes[:, 0:2] = 0.5 # center
boxes = xywh2xyxy(boxes) * 2000
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
for cls, box in zip(cls[:1000], boxes[:1000]):
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot
ax[1].imshow(img)
ax[1].axis('off')
for a in [0, 1, 2, 3]:
for s in ['top', 'right', 'left', 'bottom']:
ax[a].spines[s].set_visible(False)
plt.savefig(save_dir / 'labels.jpg', dpi=200)
matplotlib.use('Agg')
plt.close()
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True):
# Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
xyxy = torch.Tensor(xyxy).view(-1, 4)