ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -28,22 +28,27 @@ class VarifocalLoss(nn.Module):
|
|||
"""Computes varfocal loss."""
|
||||
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
|
||||
weight).mean(1).sum()
|
||||
loss = (
|
||||
(F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction="none") * weight)
|
||||
.mean(1)
|
||||
.sum()
|
||||
)
|
||||
return loss
|
||||
|
||||
|
||||
class FocalLoss(nn.Module):
|
||||
"""Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""
|
||||
|
||||
def __init__(self, ):
|
||||
def __init__(
|
||||
self,
|
||||
):
|
||||
"""Initializer for FocalLoss class with no parameters."""
|
||||
super().__init__()
|
||||
|
||||
@staticmethod
|
||||
def forward(pred, label, gamma=1.5, alpha=0.25):
|
||||
"""Calculates and updates confusion matrix for object detection/classification tasks."""
|
||||
loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
|
||||
loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none")
|
||||
# p_t = torch.exp(-loss)
|
||||
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||
|
||||
|
|
@ -91,8 +96,10 @@ class BboxLoss(nn.Module):
|
|||
tr = tl + 1 # target right
|
||||
wl = tr - target # weight left
|
||||
wr = 1 - wl # weight right
|
||||
return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
|
||||
F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)
|
||||
return (
|
||||
F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl
|
||||
+ F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
|
||||
).mean(-1, keepdim=True)
|
||||
|
||||
|
||||
class RotatedBboxLoss(BboxLoss):
|
||||
|
|
@ -145,7 +152,7 @@ class v8DetectionLoss:
|
|||
h = model.args # hyperparameters
|
||||
|
||||
m = model.model[-1] # Detect() module
|
||||
self.bce = nn.BCEWithLogitsLoss(reduction='none')
|
||||
self.bce = nn.BCEWithLogitsLoss(reduction="none")
|
||||
self.hyp = h
|
||||
self.stride = m.stride # model strides
|
||||
self.nc = m.nc # number of classes
|
||||
|
|
@ -190,7 +197,8 @@ class v8DetectionLoss:
|
|||
loss = torch.zeros(3, device=self.device) # box, cls, dfl
|
||||
feats = preds[1] if isinstance(preds, tuple) else preds
|
||||
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||||
(self.reg_max * 4, self.nc), 1)
|
||||
(self.reg_max * 4, self.nc), 1
|
||||
)
|
||||
|
||||
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||||
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
||||
|
|
@ -201,7 +209,7 @@ class v8DetectionLoss:
|
|||
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
||||
|
||||
# Targets
|
||||
targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||||
targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
||||
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||||
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||||
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||||
|
|
@ -210,8 +218,13 @@ class v8DetectionLoss:
|
|||
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
||||
|
||||
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
||||
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||||
pred_scores.detach().sigmoid(),
|
||||
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor,
|
||||
gt_labels,
|
||||
gt_bboxes,
|
||||
mask_gt,
|
||||
)
|
||||
|
||||
target_scores_sum = max(target_scores.sum(), 1)
|
||||
|
||||
|
|
@ -222,8 +235,9 @@ class v8DetectionLoss:
|
|||
# Bbox loss
|
||||
if fg_mask.sum():
|
||||
target_bboxes /= stride_tensor
|
||||
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
|
||||
target_scores_sum, fg_mask)
|
||||
loss[0], loss[2] = self.bbox_loss(
|
||||
pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
|
||||
)
|
||||
|
||||
loss[0] *= self.hyp.box # box gain
|
||||
loss[1] *= self.hyp.cls # cls gain
|
||||
|
|
@ -246,7 +260,8 @@ class v8SegmentationLoss(v8DetectionLoss):
|
|||
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
|
||||
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
||||
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||||
(self.reg_max * 4, self.nc), 1)
|
||||
(self.reg_max * 4, self.nc), 1
|
||||
)
|
||||
|
||||
# B, grids, ..
|
||||
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||||
|
|
@ -259,24 +274,31 @@ class v8SegmentationLoss(v8DetectionLoss):
|
|||
|
||||
# Targets
|
||||
try:
|
||||
batch_idx = batch['batch_idx'].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||||
batch_idx = batch["batch_idx"].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
||||
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||||
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||||
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||||
except RuntimeError as e:
|
||||
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
|
||||
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
|
||||
"i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
|
||||
"correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
|
||||
'as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help.') from e
|
||||
raise TypeError(
|
||||
"ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n"
|
||||
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
|
||||
"i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a "
|
||||
"correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' "
|
||||
"as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help."
|
||||
) from e
|
||||
|
||||
# Pboxes
|
||||
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
||||
|
||||
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
||||
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||||
pred_scores.detach().sigmoid(),
|
||||
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor,
|
||||
gt_labels,
|
||||
gt_bboxes,
|
||||
mask_gt,
|
||||
)
|
||||
|
||||
target_scores_sum = max(target_scores.sum(), 1)
|
||||
|
||||
|
|
@ -286,15 +308,23 @@ class v8SegmentationLoss(v8DetectionLoss):
|
|||
|
||||
if fg_mask.sum():
|
||||
# Bbox loss
|
||||
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
|
||||
target_scores, target_scores_sum, fg_mask)
|
||||
loss[0], loss[3] = self.bbox_loss(
|
||||
pred_distri,
|
||||
pred_bboxes,
|
||||
anchor_points,
|
||||
target_bboxes / stride_tensor,
|
||||
target_scores,
|
||||
target_scores_sum,
|
||||
fg_mask,
|
||||
)
|
||||
# Masks loss
|
||||
masks = batch['masks'].to(self.device).float()
|
||||
masks = batch["masks"].to(self.device).float()
|
||||
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
||||
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
|
||||
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
||||
|
||||
loss[1] = self.calculate_segmentation_loss(fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto,
|
||||
pred_masks, imgsz, self.overlap)
|
||||
loss[1] = self.calculate_segmentation_loss(
|
||||
fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto, pred_masks, imgsz, self.overlap
|
||||
)
|
||||
|
||||
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
|
||||
else:
|
||||
|
|
@ -308,8 +338,9 @@ class v8SegmentationLoss(v8DetectionLoss):
|
|||
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
||||
|
||||
@staticmethod
|
||||
def single_mask_loss(gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor,
|
||||
area: torch.Tensor) -> torch.Tensor:
|
||||
def single_mask_loss(
|
||||
gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor, area: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Compute the instance segmentation loss for a single image.
|
||||
|
||||
|
|
@ -327,8 +358,8 @@ class v8SegmentationLoss(v8DetectionLoss):
|
|||
The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the
|
||||
predicted masks from the prototype masks and predicted mask coefficients.
|
||||
"""
|
||||
pred_mask = torch.einsum('in,nhw->ihw', pred, proto) # (n, 32) @ (32, 80, 80) -> (n, 80, 80)
|
||||
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
|
||||
pred_mask = torch.einsum("in,nhw->ihw", pred, proto) # (n, 32) @ (32, 80, 80) -> (n, 80, 80)
|
||||
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
||||
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum()
|
||||
|
||||
def calculate_segmentation_loss(
|
||||
|
|
@ -387,8 +418,9 @@ class v8SegmentationLoss(v8DetectionLoss):
|
|||
else:
|
||||
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
|
||||
|
||||
loss += self.single_mask_loss(gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i],
|
||||
marea_i[fg_mask_i])
|
||||
loss += self.single_mask_loss(
|
||||
gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i], marea_i[fg_mask_i]
|
||||
)
|
||||
|
||||
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
|
||||
else:
|
||||
|
|
@ -415,7 +447,8 @@ class v8PoseLoss(v8DetectionLoss):
|
|||
loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility
|
||||
feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
|
||||
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||||
(self.reg_max * 4, self.nc), 1)
|
||||
(self.reg_max * 4, self.nc), 1
|
||||
)
|
||||
|
||||
# B, grids, ..
|
||||
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||||
|
|
@ -428,8 +461,8 @@ class v8PoseLoss(v8DetectionLoss):
|
|||
|
||||
# Targets
|
||||
batch_size = pred_scores.shape[0]
|
||||
batch_idx = batch['batch_idx'].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||||
batch_idx = batch["batch_idx"].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1)
|
||||
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||||
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||||
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||||
|
|
@ -439,8 +472,13 @@ class v8PoseLoss(v8DetectionLoss):
|
|||
pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3)
|
||||
|
||||
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
||||
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||||
pred_scores.detach().sigmoid(),
|
||||
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor,
|
||||
gt_labels,
|
||||
gt_bboxes,
|
||||
mask_gt,
|
||||
)
|
||||
|
||||
target_scores_sum = max(target_scores.sum(), 1)
|
||||
|
||||
|
|
@ -451,14 +489,16 @@ class v8PoseLoss(v8DetectionLoss):
|
|||
# Bbox loss
|
||||
if fg_mask.sum():
|
||||
target_bboxes /= stride_tensor
|
||||
loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
|
||||
target_scores_sum, fg_mask)
|
||||
keypoints = batch['keypoints'].to(self.device).float().clone()
|
||||
loss[0], loss[4] = self.bbox_loss(
|
||||
pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
|
||||
)
|
||||
keypoints = batch["keypoints"].to(self.device).float().clone()
|
||||
keypoints[..., 0] *= imgsz[1]
|
||||
keypoints[..., 1] *= imgsz[0]
|
||||
|
||||
loss[1], loss[2] = self.calculate_keypoints_loss(fg_mask, target_gt_idx, keypoints, batch_idx,
|
||||
stride_tensor, target_bboxes, pred_kpts)
|
||||
loss[1], loss[2] = self.calculate_keypoints_loss(
|
||||
fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
|
||||
)
|
||||
|
||||
loss[0] *= self.hyp.box # box gain
|
||||
loss[1] *= self.hyp.pose # pose gain
|
||||
|
|
@ -477,8 +517,9 @@ class v8PoseLoss(v8DetectionLoss):
|
|||
y[..., 1] += anchor_points[:, [1]] - 0.5
|
||||
return y
|
||||
|
||||
def calculate_keypoints_loss(self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes,
|
||||
pred_kpts):
|
||||
def calculate_keypoints_loss(
|
||||
self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts
|
||||
):
|
||||
"""
|
||||
Calculate the keypoints loss for the model.
|
||||
|
||||
|
|
@ -507,21 +548,23 @@ class v8PoseLoss(v8DetectionLoss):
|
|||
max_kpts = torch.unique(batch_idx, return_counts=True)[1].max()
|
||||
|
||||
# Create a tensor to hold batched keypoints
|
||||
batched_keypoints = torch.zeros((batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]),
|
||||
device=keypoints.device)
|
||||
batched_keypoints = torch.zeros(
|
||||
(batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device
|
||||
)
|
||||
|
||||
# TODO: any idea how to vectorize this?
|
||||
# Fill batched_keypoints with keypoints based on batch_idx
|
||||
for i in range(batch_size):
|
||||
keypoints_i = keypoints[batch_idx == i]
|
||||
batched_keypoints[i, :keypoints_i.shape[0]] = keypoints_i
|
||||
batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i
|
||||
|
||||
# Expand dimensions of target_gt_idx to match the shape of batched_keypoints
|
||||
target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1)
|
||||
|
||||
# Use target_gt_idx_expanded to select keypoints from batched_keypoints
|
||||
selected_keypoints = batched_keypoints.gather(
|
||||
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2]))
|
||||
1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2])
|
||||
)
|
||||
|
||||
# Divide coordinates by stride
|
||||
selected_keypoints /= stride_tensor.view(1, -1, 1, 1)
|
||||
|
|
@ -547,13 +590,12 @@ class v8ClassificationLoss:
|
|||
|
||||
def __call__(self, preds, batch):
|
||||
"""Compute the classification loss between predictions and true labels."""
|
||||
loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='mean')
|
||||
loss = torch.nn.functional.cross_entropy(preds, batch["cls"], reduction="mean")
|
||||
loss_items = loss.detach()
|
||||
return loss, loss_items
|
||||
|
||||
|
||||
class v8OBBLoss(v8DetectionLoss):
|
||||
|
||||
def __init__(self, model): # model must be de-paralleled
|
||||
super().__init__(model)
|
||||
self.assigner = RotatedTaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
|
||||
|
|
@ -583,7 +625,8 @@ class v8OBBLoss(v8DetectionLoss):
|
|||
feats, pred_angle = preds if isinstance(preds[0], list) else preds[1]
|
||||
batch_size = pred_angle.shape[0] # batch size, number of masks, mask height, mask width
|
||||
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||||
(self.reg_max * 4, self.nc), 1)
|
||||
(self.reg_max * 4, self.nc), 1
|
||||
)
|
||||
|
||||
# b, grids, ..
|
||||
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||||
|
|
@ -596,19 +639,21 @@ class v8OBBLoss(v8DetectionLoss):
|
|||
|
||||
# targets
|
||||
try:
|
||||
batch_idx = batch['batch_idx'].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes'].view(-1, 5)), 1)
|
||||
batch_idx = batch["batch_idx"].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"].view(-1, 5)), 1)
|
||||
rw, rh = targets[:, 4] * imgsz[0].item(), targets[:, 5] * imgsz[1].item()
|
||||
targets = targets[(rw >= 2) & (rh >= 2)] # filter rboxes of tiny size to stabilize training
|
||||
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||||
gt_labels, gt_bboxes = targets.split((1, 5), 2) # cls, xywhr
|
||||
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||||
except RuntimeError as e:
|
||||
raise TypeError('ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n'
|
||||
"This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
|
||||
"i.e. 'yolo train model=yolov8n-obb.pt data=coco8.yaml'.\nVerify your dataset is a "
|
||||
"correctly formatted 'OBB' dataset using 'data=coco8-obb.yaml' "
|
||||
'as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help.') from e
|
||||
raise TypeError(
|
||||
"ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n"
|
||||
"This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, "
|
||||
"i.e. 'yolo train model=yolov8n-obb.pt data=coco8.yaml'.\nVerify your dataset is a "
|
||||
"correctly formatted 'OBB' dataset using 'data=coco8-obb.yaml' "
|
||||
"as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help."
|
||||
) from e
|
||||
|
||||
# Pboxes
|
||||
pred_bboxes = self.bbox_decode(anchor_points, pred_distri, pred_angle) # xyxy, (b, h*w, 4)
|
||||
|
|
@ -616,10 +661,14 @@ class v8OBBLoss(v8DetectionLoss):
|
|||
bboxes_for_assigner = pred_bboxes.clone().detach()
|
||||
# Only the first four elements need to be scaled
|
||||
bboxes_for_assigner[..., :4] *= stride_tensor
|
||||
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(pred_scores.detach().sigmoid(),
|
||||
bboxes_for_assigner.type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor, gt_labels, gt_bboxes,
|
||||
mask_gt)
|
||||
_, target_bboxes, target_scores, fg_mask, _ = self.assigner(
|
||||
pred_scores.detach().sigmoid(),
|
||||
bboxes_for_assigner.type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor,
|
||||
gt_labels,
|
||||
gt_bboxes,
|
||||
mask_gt,
|
||||
)
|
||||
|
||||
target_scores_sum = max(target_scores.sum(), 1)
|
||||
|
||||
|
|
@ -630,8 +679,9 @@ class v8OBBLoss(v8DetectionLoss):
|
|||
# Bbox loss
|
||||
if fg_mask.sum():
|
||||
target_bboxes[..., :4] /= stride_tensor
|
||||
loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
|
||||
target_scores_sum, fg_mask)
|
||||
loss[0], loss[2] = self.bbox_loss(
|
||||
pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask
|
||||
)
|
||||
else:
|
||||
loss[0] += (pred_angle * 0).sum()
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue