ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -33,13 +33,13 @@ class SegmentationValidator(DetectionValidator):
|
|||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.plot_masks = None
|
||||
self.process = None
|
||||
self.args.task = 'segment'
|
||||
self.args.task = "segment"
|
||||
self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses batch by converting masks to float and sending to device."""
|
||||
batch = super().preprocess(batch)
|
||||
batch['masks'] = batch['masks'].to(self.device).float()
|
||||
batch["masks"] = batch["masks"].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
|
|
@ -47,7 +47,7 @@ class SegmentationValidator(DetectionValidator):
|
|||
super().init_metrics(model)
|
||||
self.plot_masks = []
|
||||
if self.args.save_json:
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
|
|
@ -55,33 +55,46 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
def get_desc(self):
|
||||
"""Return a formatted description of evaluation metrics."""
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
|
||||
'R', 'mAP50', 'mAP50-95)')
|
||||
return ("%22s" + "%11s" * 10) % (
|
||||
"Class",
|
||||
"Images",
|
||||
"Instances",
|
||||
"Box(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
"Mask(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
)
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Post-processes YOLO predictions and returns output detections with proto."""
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc)
|
||||
p = ops.non_max_suppression(
|
||||
preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc,
|
||||
)
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
return p, proto
|
||||
|
||||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares a batch for training or inference by processing images and targets."""
|
||||
prepared_batch = super()._prepare_batch(si, batch)
|
||||
midx = [si] if self.args.overlap_mask else batch['batch_idx'] == si
|
||||
prepared_batch['masks'] = batch['masks'][midx]
|
||||
midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si
|
||||
prepared_batch["masks"] = batch["masks"][midx]
|
||||
return prepared_batch
|
||||
|
||||
def _prepare_pred(self, pred, pbatch, proto):
|
||||
"""Prepares a batch for training or inference by processing images and targets."""
|
||||
predn = super()._prepare_pred(pred, pbatch)
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch['imgsz'])
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"])
|
||||
return predn, pred_masks
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
|
|
@ -89,14 +102,16 @@ class SegmentationValidator(DetectionValidator):
|
|||
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
||||
self.seen += 1
|
||||
npr = len(pred)
|
||||
stat = dict(conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device))
|
||||
stat = dict(
|
||||
conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
)
|
||||
pbatch = self._prepare_batch(si, batch)
|
||||
cls, bbox = pbatch.pop('cls'), pbatch.pop('bbox')
|
||||
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||||
nl = len(cls)
|
||||
stat['target_cls'] = cls
|
||||
stat["target_cls"] = cls
|
||||
if npr == 0:
|
||||
if nl:
|
||||
for k in self.stats.keys():
|
||||
|
|
@ -106,24 +121,20 @@ class SegmentationValidator(DetectionValidator):
|
|||
continue
|
||||
|
||||
# Masks
|
||||
gt_masks = pbatch.pop('masks')
|
||||
gt_masks = pbatch.pop("masks")
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn, pred_masks = self._prepare_pred(pred, pbatch, proto)
|
||||
stat['conf'] = predn[:, 4]
|
||||
stat['pred_cls'] = predn[:, 5]
|
||||
stat["conf"] = predn[:, 4]
|
||||
stat["pred_cls"] = predn[:, 5]
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
stat['tp'] = self._process_batch(predn, bbox, cls)
|
||||
stat['tp_m'] = self._process_batch(predn,
|
||||
bbox,
|
||||
cls,
|
||||
pred_masks,
|
||||
gt_masks,
|
||||
self.args.overlap_mask,
|
||||
masks=True)
|
||||
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||||
stat["tp_m"] = self._process_batch(
|
||||
predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True
|
||||
)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||
|
||||
|
|
@ -136,10 +147,12 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||
pbatch['ori_shape'],
|
||||
ratio_pad=batch['ratio_pad'][si])
|
||||
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
|
||||
pred_masks = ops.scale_image(
|
||||
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||
pbatch["ori_shape"],
|
||||
ratio_pad=batch["ratio_pad"][si],
|
||||
)
|
||||
self.pred_to_json(predn, batch["im_file"][si], pred_masks)
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
|
|
@ -166,7 +179,7 @@ class SegmentationValidator(DetectionValidator):
|
|||
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
||||
gt_masks = gt_masks.gt_(0.5)
|
||||
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||
else: # boxes
|
||||
|
|
@ -176,26 +189,29 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots validation samples with bounding box labels."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
masks=batch['masks'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot)
|
||||
plot_images(
|
||||
batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
masks=batch["masks"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots batch predictions with masks and bounding boxes."""
|
||||
plot_images(
|
||||
batch['img'],
|
||||
batch["img"],
|
||||
*output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed
|
||||
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
on_plot=self.on_plot,
|
||||
) # pred
|
||||
self.plot_masks.clear()
|
||||
|
||||
def pred_to_json(self, predn, filename, pred_masks):
|
||||
|
|
@ -205,8 +221,8 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
def single_encode(x):
|
||||
"""Encode predicted masks as RLE and append results to jdict."""
|
||||
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
|
||||
rle['counts'] = rle['counts'].decode('utf-8')
|
||||
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
|
||||
rle["counts"] = rle["counts"].decode("utf-8")
|
||||
return rle
|
||||
|
||||
stem = Path(filename).stem
|
||||
|
|
@ -217,37 +233,41 @@ class SegmentationValidator(DetectionValidator):
|
|||
with ThreadPool(NUM_THREADS) as pool:
|
||||
rles = pool.map(single_encode, pred_masks)
|
||||
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5),
|
||||
'segmentation': rles[i]})
|
||||
self.jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": self.class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"score": round(p[4], 5),
|
||||
"segmentation": rles[i],
|
||||
}
|
||||
)
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Return COCO-style object detection evaluation metrics."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
|
||||
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]):
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
idx = i * 4 + 2
|
||||
stats[self.metrics.keys[idx + 1]], stats[
|
||||
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
|
||||
:2
|
||||
] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||
LOGGER.warning(f"pycocotools unable to run: {e}")
|
||||
return stats
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue