ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -31,38 +31,53 @@ class PoseValidator(DetectionValidator):
|
|||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.sigma = None
|
||||
self.kpt_shape = None
|
||||
self.args.task = 'pose'
|
||||
self.args.task = "pose"
|
||||
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
|
||||
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
'See https://github.com/ultralytics/ultralytics/issues/4031.')
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
||||
)
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
|
||||
batch = super().preprocess(batch)
|
||||
batch['keypoints'] = batch['keypoints'].to(self.device).float()
|
||||
batch["keypoints"] = batch["keypoints"].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def get_desc(self):
|
||||
"""Returns description of evaluation metrics in string format."""
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P',
|
||||
'R', 'mAP50', 'mAP50-95)')
|
||||
return ("%22s" + "%11s" * 10) % (
|
||||
"Class",
|
||||
"Images",
|
||||
"Instances",
|
||||
"Box(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
"Pose(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
)
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply non-maximum suppression and return detections with high confidence scores."""
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc)
|
||||
return ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc,
|
||||
)
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initiate pose estimation metrics for YOLO model."""
|
||||
super().init_metrics(model)
|
||||
self.kpt_shape = self.data['kpt_shape']
|
||||
self.kpt_shape = self.data["kpt_shape"]
|
||||
is_pose = self.kpt_shape == [17, 3]
|
||||
nkpt = self.kpt_shape[0]
|
||||
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
|
||||
|
|
@ -71,21 +86,21 @@ class PoseValidator(DetectionValidator):
|
|||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares a batch for processing by converting keypoints to float and moving to device."""
|
||||
pbatch = super()._prepare_batch(si, batch)
|
||||
kpts = batch['keypoints'][batch['batch_idx'] == si]
|
||||
h, w = pbatch['imgsz']
|
||||
kpts = batch["keypoints"][batch["batch_idx"] == si]
|
||||
h, w = pbatch["imgsz"]
|
||||
kpts = kpts.clone()
|
||||
kpts[..., 0] *= w
|
||||
kpts[..., 1] *= h
|
||||
kpts = ops.scale_coords(pbatch['imgsz'], kpts, pbatch['ori_shape'], ratio_pad=pbatch['ratio_pad'])
|
||||
pbatch['kpts'] = kpts
|
||||
kpts = ops.scale_coords(pbatch["imgsz"], kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
|
||||
pbatch["kpts"] = kpts
|
||||
return pbatch
|
||||
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
"""Prepares and scales keypoints in a batch for pose processing."""
|
||||
predn = super()._prepare_pred(pred, pbatch)
|
||||
nk = pbatch['kpts'].shape[1]
|
||||
nk = pbatch["kpts"].shape[1]
|
||||
pred_kpts = predn[:, 6:].view(len(predn), nk, -1)
|
||||
ops.scale_coords(pbatch['imgsz'], pred_kpts, pbatch['ori_shape'], ratio_pad=pbatch['ratio_pad'])
|
||||
ops.scale_coords(pbatch["imgsz"], pred_kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
|
||||
return predn, pred_kpts
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
|
|
@ -93,14 +108,16 @@ class PoseValidator(DetectionValidator):
|
|||
for si, pred in enumerate(preds):
|
||||
self.seen += 1
|
||||
npr = len(pred)
|
||||
stat = dict(conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device))
|
||||
stat = dict(
|
||||
conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
)
|
||||
pbatch = self._prepare_batch(si, batch)
|
||||
cls, bbox = pbatch.pop('cls'), pbatch.pop('bbox')
|
||||
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||||
nl = len(cls)
|
||||
stat['target_cls'] = cls
|
||||
stat["target_cls"] = cls
|
||||
if npr == 0:
|
||||
if nl:
|
||||
for k in self.stats.keys():
|
||||
|
|
@ -113,13 +130,13 @@ class PoseValidator(DetectionValidator):
|
|||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn, pred_kpts = self._prepare_pred(pred, pbatch)
|
||||
stat['conf'] = predn[:, 4]
|
||||
stat['pred_cls'] = predn[:, 5]
|
||||
stat["conf"] = predn[:, 4]
|
||||
stat["pred_cls"] = predn[:, 5]
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
stat['tp'] = self._process_batch(predn, bbox, cls)
|
||||
stat['tp_p'] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch['kpts'])
|
||||
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||||
stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"])
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||
|
||||
|
|
@ -128,7 +145,7 @@ class PoseValidator(DetectionValidator):
|
|||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
self.pred_to_json(predn, batch["im_file"][si])
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
|
|
@ -159,26 +176,30 @@ class PoseValidator(DetectionValidator):
|
|||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
kpts=batch['keypoints'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot)
|
||||
plot_images(
|
||||
batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
kpts=batch["keypoints"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predictions for YOLO model."""
|
||||
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
|
||||
plot_images(batch['img'],
|
||||
*output_to_target(preds, max_det=self.args.max_det),
|
||||
kpts=pred_kpts,
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
plot_images(
|
||||
batch["img"],
|
||||
*output_to_target(preds, max_det=self.args.max_det),
|
||||
kpts=pred_kpts,
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
) # pred
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Converts YOLO predictions to COCO JSON format."""
|
||||
|
|
@ -187,37 +208,41 @@ class PoseValidator(DetectionValidator):
|
|||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(predn.tolist(), box.tolist()):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'keypoints': p[6:],
|
||||
'score': round(p[4], 5)})
|
||||
self.jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": self.class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"keypoints": p[6:],
|
||||
"score": round(p[4], 5),
|
||||
}
|
||||
)
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates object detection model using COCO JSON format."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'keypoints')]):
|
||||
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "keypoints")]):
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
idx = i * 4 + 2
|
||||
stats[self.metrics.keys[idx + 1]], stats[
|
||||
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
|
||||
:2
|
||||
] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||
LOGGER.warning(f"pycocotools unable to run: {e}")
|
||||
return stats
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue