ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -27,26 +27,28 @@ class OBBValidator(DetectionValidator):
|
|||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics."""
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.args.task = 'obb'
|
||||
self.args.task = "obb"
|
||||
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot)
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initialize evaluation metrics for YOLO."""
|
||||
super().init_metrics(model)
|
||||
val = self.data.get(self.args.split, '') # validation path
|
||||
self.is_dota = isinstance(val, str) and 'DOTA' in val # is COCO
|
||||
val = self.data.get(self.args.split, "") # validation path
|
||||
self.is_dota = isinstance(val, str) and "DOTA" in val # is COCO
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
nc=self.nc,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
rotated=True)
|
||||
return ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
nc=self.nc,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
rotated=True,
|
||||
)
|
||||
|
||||
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
||||
"""
|
||||
|
|
@ -66,12 +68,12 @@ class OBBValidator(DetectionValidator):
|
|||
|
||||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares and returns a batch for OBB validation."""
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx].squeeze(-1)
|
||||
bbox = batch['bboxes'][idx]
|
||||
ori_shape = batch['ori_shape'][si]
|
||||
imgsz = batch['img'].shape[2:]
|
||||
ratio_pad = batch['ratio_pad'][si]
|
||||
idx = batch["batch_idx"] == si
|
||||
cls = batch["cls"][idx].squeeze(-1)
|
||||
bbox = batch["bboxes"][idx]
|
||||
ori_shape = batch["ori_shape"][si]
|
||||
imgsz = batch["img"].shape[2:]
|
||||
ratio_pad = batch["ratio_pad"][si]
|
||||
if len(cls):
|
||||
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
|
||||
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
|
||||
|
|
@ -81,18 +83,21 @@ class OBBValidator(DetectionValidator):
|
|||
def _prepare_pred(self, pred, pbatch):
|
||||
"""Prepares and returns a batch for OBB validation with scaled and padded bounding boxes."""
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(pbatch['imgsz'], predn[:, :4], pbatch['ori_shape'], ratio_pad=pbatch['ratio_pad'],
|
||||
xywh=True) # native-space pred
|
||||
ops.scale_boxes(
|
||||
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], xywh=True
|
||||
) # native-space pred
|
||||
return predn
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||
plot_images(batch['img'],
|
||||
*output_to_rotated_target(preds, max_det=self.args.max_det),
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
plot_images(
|
||||
batch["img"],
|
||||
*output_to_rotated_target(preds, max_det=self.args.max_det),
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
) # pred
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Serialize YOLO predictions to COCO json format."""
|
||||
|
|
@ -101,12 +106,15 @@ class OBBValidator(DetectionValidator):
|
|||
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
|
||||
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
|
||||
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(predn[i, 5].item())],
|
||||
'score': round(predn[i, 4].item(), 5),
|
||||
'rbox': [round(x, 3) for x in r],
|
||||
'poly': [round(x, 3) for x in b]})
|
||||
self.jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": self.class_map[int(predn[i, 5].item())],
|
||||
"score": round(predn[i, 4].item(), 5),
|
||||
"rbox": [round(x, 3) for x in r],
|
||||
"poly": [round(x, 3) for x in b],
|
||||
}
|
||||
)
|
||||
|
||||
def save_one_txt(self, predn, save_conf, shape, file):
|
||||
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
||||
|
|
@ -116,8 +124,8 @@ class OBBValidator(DetectionValidator):
|
|||
xywha[:, :4] /= gn
|
||||
xyxyxyxy = ops.xywhr2xyxyxyxy(xywha).view(-1).tolist() # normalized xywh
|
||||
line = (cls, *xyxyxyxy, conf) if save_conf else (cls, *xyxyxyxy) # label format
|
||||
with open(file, 'a') as f:
|
||||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||
with open(file, "a") as f:
|
||||
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
||||
|
|
@ -125,42 +133,43 @@ class OBBValidator(DetectionValidator):
|
|||
import json
|
||||
import re
|
||||
from collections import defaultdict
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
pred_txt = self.save_dir / 'predictions_txt' # predictions
|
||||
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
pred_txt = self.save_dir / "predictions_txt" # predictions
|
||||
pred_txt.mkdir(parents=True, exist_ok=True)
|
||||
data = json.load(open(pred_json))
|
||||
# Save split results
|
||||
LOGGER.info(f'Saving predictions with DOTA format to {str(pred_txt)}...')
|
||||
LOGGER.info(f"Saving predictions with DOTA format to {str(pred_txt)}...")
|
||||
for d in data:
|
||||
image_id = d['image_id']
|
||||
score = d['score']
|
||||
classname = self.names[d['category_id']].replace(' ', '-')
|
||||
image_id = d["image_id"]
|
||||
score = d["score"]
|
||||
classname = self.names[d["category_id"]].replace(" ", "-")
|
||||
|
||||
lines = '{} {} {} {} {} {} {} {} {} {}\n'.format(
|
||||
lines = "{} {} {} {} {} {} {} {} {} {}\n".format(
|
||||
image_id,
|
||||
score,
|
||||
d['poly'][0],
|
||||
d['poly'][1],
|
||||
d['poly'][2],
|
||||
d['poly'][3],
|
||||
d['poly'][4],
|
||||
d['poly'][5],
|
||||
d['poly'][6],
|
||||
d['poly'][7],
|
||||
d["poly"][0],
|
||||
d["poly"][1],
|
||||
d["poly"][2],
|
||||
d["poly"][3],
|
||||
d["poly"][4],
|
||||
d["poly"][5],
|
||||
d["poly"][6],
|
||||
d["poly"][7],
|
||||
)
|
||||
with open(str(pred_txt / f'Task1_{classname}') + '.txt', 'a') as f:
|
||||
with open(str(pred_txt / f"Task1_{classname}") + ".txt", "a") as f:
|
||||
f.writelines(lines)
|
||||
# Save merged results, this could result slightly lower map than using official merging script,
|
||||
# because of the probiou calculation.
|
||||
pred_merged_txt = self.save_dir / 'predictions_merged_txt' # predictions
|
||||
pred_merged_txt = self.save_dir / "predictions_merged_txt" # predictions
|
||||
pred_merged_txt.mkdir(parents=True, exist_ok=True)
|
||||
merged_results = defaultdict(list)
|
||||
LOGGER.info(f'Saving merged predictions with DOTA format to {str(pred_merged_txt)}...')
|
||||
LOGGER.info(f"Saving merged predictions with DOTA format to {str(pred_merged_txt)}...")
|
||||
for d in data:
|
||||
image_id = d['image_id'].split('__')[0]
|
||||
pattern = re.compile(r'\d+___\d+')
|
||||
x, y = (int(c) for c in re.findall(pattern, d['image_id'])[0].split('___'))
|
||||
bbox, score, cls = d['rbox'], d['score'], d['category_id']
|
||||
image_id = d["image_id"].split("__")[0]
|
||||
pattern = re.compile(r"\d+___\d+")
|
||||
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___"))
|
||||
bbox, score, cls = d["rbox"], d["score"], d["category_id"]
|
||||
bbox[0] += x
|
||||
bbox[1] += y
|
||||
bbox.extend([score, cls])
|
||||
|
|
@ -178,11 +187,11 @@ class OBBValidator(DetectionValidator):
|
|||
|
||||
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
|
||||
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
|
||||
classname = self.names[int(x[-1])].replace(' ', '-')
|
||||
classname = self.names[int(x[-1])].replace(" ", "-")
|
||||
poly = [round(i, 3) for i in x[:-2]]
|
||||
score = round(x[-2], 3)
|
||||
|
||||
lines = '{} {} {} {} {} {} {} {} {} {}\n'.format(
|
||||
lines = "{} {} {} {} {} {} {} {} {} {}\n".format(
|
||||
image_id,
|
||||
score,
|
||||
poly[0],
|
||||
|
|
@ -194,7 +203,7 @@ class OBBValidator(DetectionValidator):
|
|||
poly[6],
|
||||
poly[7],
|
||||
)
|
||||
with open(str(pred_merged_txt / f'Task1_{classname}') + '.txt', 'a') as f:
|
||||
with open(str(pred_merged_txt / f"Task1_{classname}") + ".txt", "a") as f:
|
||||
f.writelines(lines)
|
||||
|
||||
return stats
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue