ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -43,12 +43,12 @@ class RTDETRTrainer(DetectionTrainer):
|
|||
Returns:
|
||||
(RTDETRDetectionModel): Initialized model.
|
||||
"""
|
||||
model = RTDETRDetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
||||
model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
return model
|
||||
|
||||
def build_dataset(self, img_path, mode='val', batch=None):
|
||||
def build_dataset(self, img_path, mode="val", batch=None):
|
||||
"""
|
||||
Build and return an RT-DETR dataset for training or validation.
|
||||
|
||||
|
|
@ -60,15 +60,17 @@ class RTDETRTrainer(DetectionTrainer):
|
|||
Returns:
|
||||
(RTDETRDataset): Dataset object for the specific mode.
|
||||
"""
|
||||
return RTDETRDataset(img_path=img_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch,
|
||||
augment=mode == 'train',
|
||||
hyp=self.args,
|
||||
rect=False,
|
||||
cache=self.args.cache or None,
|
||||
prefix=colorstr(f'{mode}: '),
|
||||
data=self.data)
|
||||
return RTDETRDataset(
|
||||
img_path=img_path,
|
||||
imgsz=self.args.imgsz,
|
||||
batch_size=batch,
|
||||
augment=mode == "train",
|
||||
hyp=self.args,
|
||||
rect=False,
|
||||
cache=self.args.cache or None,
|
||||
prefix=colorstr(f"{mode}: "),
|
||||
data=self.data,
|
||||
)
|
||||
|
||||
def get_validator(self):
|
||||
"""
|
||||
|
|
@ -77,7 +79,7 @@ class RTDETRTrainer(DetectionTrainer):
|
|||
Returns:
|
||||
(RTDETRValidator): Validator object for model validation.
|
||||
"""
|
||||
self.loss_names = 'giou_loss', 'cls_loss', 'l1_loss'
|
||||
self.loss_names = "giou_loss", "cls_loss", "l1_loss"
|
||||
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
||||
|
||||
def preprocess_batch(self, batch):
|
||||
|
|
@ -91,10 +93,10 @@ class RTDETRTrainer(DetectionTrainer):
|
|||
(dict): Preprocessed batch.
|
||||
"""
|
||||
batch = super().preprocess_batch(batch)
|
||||
bs = len(batch['img'])
|
||||
batch_idx = batch['batch_idx']
|
||||
bs = len(batch["img"])
|
||||
batch_idx = batch["batch_idx"]
|
||||
gt_bbox, gt_class = [], []
|
||||
for i in range(bs):
|
||||
gt_bbox.append(batch['bboxes'][batch_idx == i].to(batch_idx.device))
|
||||
gt_class.append(batch['cls'][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
|
||||
gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
|
||||
gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
|
||||
return batch
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue