ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -89,10 +89,10 @@ class BaseValidator:
|
|||
self.nc = None
|
||||
self.iouv = None
|
||||
self.jdict = None
|
||||
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0}
|
||||
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0}
|
||||
|
||||
self.save_dir = save_dir or get_save_dir(self.args)
|
||||
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
|
||||
if self.args.conf is None:
|
||||
self.args.conf = 0.001 # default conf=0.001
|
||||
self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1)
|
||||
|
|
@ -110,7 +110,7 @@ class BaseValidator:
|
|||
if self.training:
|
||||
self.device = trainer.device
|
||||
self.data = trainer.data
|
||||
self.args.half = self.device.type != 'cpu' # force FP16 val during training
|
||||
self.args.half = self.device.type != "cpu" # force FP16 val during training
|
||||
model = trainer.ema.ema or trainer.model
|
||||
model = model.half() if self.args.half else model.float()
|
||||
# self.model = model
|
||||
|
|
@ -119,11 +119,13 @@ class BaseValidator:
|
|||
model.eval()
|
||||
else:
|
||||
callbacks.add_integration_callbacks(self)
|
||||
model = AutoBackend(model or self.args.model,
|
||||
device=select_device(self.args.device, self.args.batch),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half)
|
||||
model = AutoBackend(
|
||||
model or self.args.model,
|
||||
device=select_device(self.args.device, self.args.batch),
|
||||
dnn=self.args.dnn,
|
||||
data=self.args.data,
|
||||
fp16=self.args.half,
|
||||
)
|
||||
# self.model = model
|
||||
self.device = model.device # update device
|
||||
self.args.half = model.fp16 # update half
|
||||
|
|
@ -133,16 +135,16 @@ class BaseValidator:
|
|||
self.args.batch = model.batch_size
|
||||
elif not pt and not jit:
|
||||
self.args.batch = 1 # export.py models default to batch-size 1
|
||||
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
|
||||
LOGGER.info(f"Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
|
||||
|
||||
if str(self.args.data).split('.')[-1] in ('yaml', 'yml'):
|
||||
if str(self.args.data).split(".")[-1] in ("yaml", "yml"):
|
||||
self.data = check_det_dataset(self.args.data)
|
||||
elif self.args.task == 'classify':
|
||||
elif self.args.task == "classify":
|
||||
self.data = check_cls_dataset(self.args.data, split=self.args.split)
|
||||
else:
|
||||
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
|
||||
|
||||
if self.device.type in ('cpu', 'mps'):
|
||||
if self.device.type in ("cpu", "mps"):
|
||||
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
|
||||
if not pt:
|
||||
self.args.rect = False
|
||||
|
|
@ -152,13 +154,13 @@ class BaseValidator:
|
|||
model.eval()
|
||||
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) # warmup
|
||||
|
||||
self.run_callbacks('on_val_start')
|
||||
self.run_callbacks("on_val_start")
|
||||
dt = Profile(), Profile(), Profile(), Profile()
|
||||
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader))
|
||||
self.init_metrics(de_parallel(model))
|
||||
self.jdict = [] # empty before each val
|
||||
for batch_i, batch in enumerate(bar):
|
||||
self.run_callbacks('on_val_batch_start')
|
||||
self.run_callbacks("on_val_batch_start")
|
||||
self.batch_i = batch_i
|
||||
# Preprocess
|
||||
with dt[0]:
|
||||
|
|
@ -166,7 +168,7 @@ class BaseValidator:
|
|||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
preds = model(batch['img'], augment=augment)
|
||||
preds = model(batch["img"], augment=augment)
|
||||
|
||||
# Loss
|
||||
with dt[2]:
|
||||
|
|
@ -182,23 +184,25 @@ class BaseValidator:
|
|||
self.plot_val_samples(batch, batch_i)
|
||||
self.plot_predictions(batch, preds, batch_i)
|
||||
|
||||
self.run_callbacks('on_val_batch_end')
|
||||
self.run_callbacks("on_val_batch_end")
|
||||
stats = self.get_stats()
|
||||
self.check_stats(stats)
|
||||
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt)))
|
||||
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt)))
|
||||
self.finalize_metrics()
|
||||
self.print_results()
|
||||
self.run_callbacks('on_val_end')
|
||||
self.run_callbacks("on_val_end")
|
||||
if self.training:
|
||||
model.float()
|
||||
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')}
|
||||
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")}
|
||||
return {k: round(float(v), 5) for k, v in results.items()} # return results as 5 decimal place floats
|
||||
else:
|
||||
LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' %
|
||||
tuple(self.speed.values()))
|
||||
LOGGER.info(
|
||||
"Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image"
|
||||
% tuple(self.speed.values())
|
||||
)
|
||||
if self.args.save_json and self.jdict:
|
||||
with open(str(self.save_dir / 'predictions.json'), 'w') as f:
|
||||
LOGGER.info(f'Saving {f.name}...')
|
||||
with open(str(self.save_dir / "predictions.json"), "w") as f:
|
||||
LOGGER.info(f"Saving {f.name}...")
|
||||
json.dump(self.jdict, f) # flatten and save
|
||||
stats = self.eval_json(stats) # update stats
|
||||
if self.args.plots or self.args.save_json:
|
||||
|
|
@ -228,6 +232,7 @@ class BaseValidator:
|
|||
if use_scipy:
|
||||
# WARNING: known issue that reduces mAP in https://github.com/ultralytics/ultralytics/pull/4708
|
||||
import scipy # scope import to avoid importing for all commands
|
||||
|
||||
cost_matrix = iou * (iou >= threshold)
|
||||
if cost_matrix.any():
|
||||
labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True)
|
||||
|
|
@ -257,11 +262,11 @@ class BaseValidator:
|
|||
|
||||
def get_dataloader(self, dataset_path, batch_size):
|
||||
"""Get data loader from dataset path and batch size."""
|
||||
raise NotImplementedError('get_dataloader function not implemented for this validator')
|
||||
raise NotImplementedError("get_dataloader function not implemented for this validator")
|
||||
|
||||
def build_dataset(self, img_path):
|
||||
"""Build dataset."""
|
||||
raise NotImplementedError('build_dataset function not implemented in validator')
|
||||
raise NotImplementedError("build_dataset function not implemented in validator")
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses an input batch."""
|
||||
|
|
@ -306,7 +311,7 @@ class BaseValidator:
|
|||
|
||||
def on_plot(self, name, data=None):
|
||||
"""Registers plots (e.g. to be consumed in callbacks)"""
|
||||
self.plots[Path(name)] = {'data': data, 'timestamp': time.time()}
|
||||
self.plots[Path(name)] = {"data": data, "timestamp": time.time()}
|
||||
|
||||
# TODO: may need to put these following functions into callback
|
||||
def plot_val_samples(self, batch, ni):
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue