ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-10 03:16:08 +01:00 committed by GitHub
parent e795277391
commit fe27db2f6e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
139 changed files with 6870 additions and 5125 deletions

View file

@ -132,8 +132,11 @@ class BasePredictor:
def inference(self, im, *args, **kwargs):
"""Runs inference on a given image using the specified model and arguments."""
visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,
mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False
visualize = (
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
if self.args.visualize and (not self.source_type.tensor)
else False
)
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)
def pre_transform(self, im):
@ -153,35 +156,38 @@ class BasePredictor:
def write_results(self, idx, results, batch):
"""Write inference results to a file or directory."""
p, im, _ = batch
log_string = ''
log_string = ""
if len(im.shape) == 3:
im = im[None] # expand for batch dim
if self.source_type.webcam or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1
log_string += f'{idx}: '
log_string += f"{idx}: "
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
frame = getattr(self.dataset, "frame", 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
log_string += '%gx%g ' % im.shape[2:] # print string
self.txt_path = str(self.save_dir / "labels" / p.stem) + ("" if self.dataset.mode == "image" else f"_{frame}")
log_string += "%gx%g " % im.shape[2:] # print string
result = results[idx]
log_string += result.verbose()
if self.args.save or self.args.show: # Add bbox to image
plot_args = {
'line_width': self.args.line_width,
'boxes': self.args.show_boxes,
'conf': self.args.show_conf,
'labels': self.args.show_labels}
"line_width": self.args.line_width,
"boxes": self.args.show_boxes,
"conf": self.args.show_conf,
"labels": self.args.show_labels,
}
if not self.args.retina_masks:
plot_args['im_gpu'] = im[idx]
plot_args["im_gpu"] = im[idx]
self.plotted_img = result.plot(**plot_args)
# Write
if self.args.save_txt:
result.save_txt(f'{self.txt_path}.txt', save_conf=self.args.save_conf)
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
if self.args.save_crop:
result.save_crop(save_dir=self.save_dir / 'crops',
file_name=self.data_path.stem + ('' if self.dataset.mode == 'image' else f'_{frame}'))
result.save_crop(
save_dir=self.save_dir / "crops",
file_name=self.data_path.stem + ("" if self.dataset.mode == "image" else f"_{frame}"),
)
return log_string
@ -210,17 +216,24 @@ class BasePredictor:
def setup_source(self, source):
"""Sets up source and inference mode."""
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size
self.transforms = getattr(
self.model.model, 'transforms', classify_transforms(
self.imgsz[0], crop_fraction=self.args.crop_fraction)) if self.args.task == 'classify' else None
self.dataset = load_inference_source(source=source,
imgsz=self.imgsz,
vid_stride=self.args.vid_stride,
buffer=self.args.stream_buffer)
self.transforms = (
getattr(
self.model.model,
"transforms",
classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction),
)
if self.args.task == "classify"
else None
)
self.dataset = load_inference_source(
source=source, imgsz=self.imgsz, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer
)
self.source_type = self.dataset.source_type
if not getattr(self, 'stream', True) and (self.dataset.mode == 'stream' or # streams
len(self.dataset) > 1000 or # images
any(getattr(self.dataset, 'video_flag', [False]))): # videos
if not getattr(self, "stream", True) and (
self.dataset.mode == "stream" # streams
or len(self.dataset) > 1000 # images
or any(getattr(self.dataset, "video_flag", [False]))
): # videos
LOGGER.warning(STREAM_WARNING)
self.vid_path = [None] * self.dataset.bs
self.vid_writer = [None] * self.dataset.bs
@ -230,7 +243,7 @@ class BasePredictor:
def stream_inference(self, source=None, model=None, *args, **kwargs):
"""Streams real-time inference on camera feed and saves results to file."""
if self.args.verbose:
LOGGER.info('')
LOGGER.info("")
# Setup model
if not self.model:
@ -242,7 +255,7 @@ class BasePredictor:
# Check if save_dir/ label file exists
if self.args.save or self.args.save_txt:
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# Warmup model
if not self.done_warmup:
@ -250,10 +263,10 @@ class BasePredictor:
self.done_warmup = True
self.seen, self.windows, self.batch, profilers = 0, [], None, (ops.Profile(), ops.Profile(), ops.Profile())
self.run_callbacks('on_predict_start')
self.run_callbacks("on_predict_start")
for batch in self.dataset:
self.run_callbacks('on_predict_batch_start')
self.run_callbacks("on_predict_batch_start")
self.batch = batch
path, im0s, vid_cap, s = batch
@ -272,15 +285,16 @@ class BasePredictor:
with profilers[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks('on_predict_postprocess_end')
self.run_callbacks("on_predict_postprocess_end")
# Visualize, save, write results
n = len(im0s)
for i in range(n):
self.seen += 1
self.results[i].speed = {
'preprocess': profilers[0].dt * 1E3 / n,
'inference': profilers[1].dt * 1E3 / n,
'postprocess': profilers[2].dt * 1E3 / n}
"preprocess": profilers[0].dt * 1e3 / n,
"inference": profilers[1].dt * 1e3 / n,
"postprocess": profilers[2].dt * 1e3 / n,
}
p, im0 = path[i], None if self.source_type.tensor else im0s[i].copy()
p = Path(p)
@ -293,12 +307,12 @@ class BasePredictor:
if self.args.save and self.plotted_img is not None:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
self.run_callbacks('on_predict_batch_end')
self.run_callbacks("on_predict_batch_end")
yield from self.results
# Print time (inference-only)
if self.args.verbose:
LOGGER.info(f'{s}{profilers[1].dt * 1E3:.1f}ms')
LOGGER.info(f"{s}{profilers[1].dt * 1E3:.1f}ms")
# Release assets
if isinstance(self.vid_writer[-1], cv2.VideoWriter):
@ -306,25 +320,29 @@ class BasePredictor:
# Print results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1E3 for x in profilers) # speeds per image
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
f'{(1, 3, *im.shape[2:])}' % t)
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image
LOGGER.info(
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
f"{(1, 3, *im.shape[2:])}" % t
)
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks('on_predict_end')
self.run_callbacks("on_predict_end")
def setup_model(self, model, verbose=True):
"""Initialize YOLO model with given parameters and set it to evaluation mode."""
self.model = AutoBackend(model or self.args.model,
device=select_device(self.args.device, verbose=verbose),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
fuse=True,
verbose=verbose)
self.model = AutoBackend(
model or self.args.model,
device=select_device(self.args.device, verbose=verbose),
dnn=self.args.dnn,
data=self.args.data,
fp16=self.args.half,
fuse=True,
verbose=verbose,
)
self.device = self.model.device # update device
self.args.half = self.model.fp16 # update half
@ -333,18 +351,18 @@ class BasePredictor:
def show(self, p):
"""Display an image in a window using OpenCV imshow()."""
im0 = self.plotted_img
if platform.system() == 'Linux' and p not in self.windows:
if platform.system() == "Linux" and p not in self.windows:
self.windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0)
cv2.waitKey(500 if self.batch[3].startswith('image') else 1) # 1 millisecond
cv2.waitKey(500 if self.batch[3].startswith("image") else 1) # 1 millisecond
def save_preds(self, vid_cap, idx, save_path):
"""Save video predictions as mp4 at specified path."""
im0 = self.plotted_img
# Save imgs
if self.dataset.mode == 'image':
if self.dataset.mode == "image":
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
frames_path = f'{save_path.split(".", 1)[0]}_frames/'
@ -361,15 +379,16 @@ class BasePredictor:
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
suffix, fourcc = ('.mp4', 'avc1') if MACOS else ('.avi', 'WMV2') if WINDOWS else ('.avi', 'MJPG')
self.vid_writer[idx] = cv2.VideoWriter(str(Path(save_path).with_suffix(suffix)),
cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
self.vid_writer[idx] = cv2.VideoWriter(
str(Path(save_path).with_suffix(suffix)), cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
)
# Write video
self.vid_writer[idx].write(im0)
# Write frame
if self.args.save_frames:
cv2.imwrite(f'{frames_path}{self.vid_frame[idx]}.jpg', im0)
cv2.imwrite(f"{frames_path}{self.vid_frame[idx]}.jpg", im0)
self.vid_frame[idx] += 1
def run_callbacks(self, event: str):