ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-10 03:16:08 +01:00 committed by GitHub
parent e795277391
commit fe27db2f6e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
139 changed files with 6870 additions and 5125 deletions

View file

@ -53,7 +53,7 @@ class Model(nn.Module):
list(ultralytics.engine.results.Results): The prediction results.
"""
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
def __init__(self, model: Union[str, Path] = "yolov8n.pt", task=None) -> None:
"""
Initializes the YOLO model.
@ -89,7 +89,7 @@ class Model(nn.Module):
# Load or create new YOLO model
model = checks.check_model_file_from_stem(model) # add suffix, i.e. yolov8n -> yolov8n.pt
if Path(model).suffix in ('.yaml', '.yml'):
if Path(model).suffix in (".yaml", ".yml"):
self._new(model, task)
else:
self._load(model, task)
@ -112,16 +112,20 @@ class Model(nn.Module):
def is_triton_model(model):
"""Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>"""
from urllib.parse import urlsplit
url = urlsplit(model)
return url.netloc and url.path and url.scheme in {'http', 'grpc'}
return url.netloc and url.path and url.scheme in {"http", "grpc"}
@staticmethod
def is_hub_model(model):
"""Check if the provided model is a HUB model."""
return any((
model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID
return any(
(
model.startswith(f"{HUB_WEB_ROOT}/models/"), # i.e. https://hub.ultralytics.com/models/MODEL_ID
[len(x) for x in model.split("_")] == [42, 20], # APIKEY_MODELID
len(model) == 20 and not Path(model).exists() and all(x not in model for x in "./\\"),
)
) # MODELID
def _new(self, cfg: str, task=None, model=None, verbose=True):
"""
@ -136,9 +140,9 @@ class Model(nn.Module):
cfg_dict = yaml_model_load(cfg)
self.cfg = cfg
self.task = task or guess_model_task(cfg_dict)
self.model = (model or self._smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model
self.overrides['model'] = self.cfg
self.overrides['task'] = self.task
self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model
self.overrides["model"] = self.cfg
self.overrides["task"] = self.task
# Below added to allow export from YAMLs
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
@ -153,9 +157,9 @@ class Model(nn.Module):
task (str | None): model task
"""
suffix = Path(weights).suffix
if suffix == '.pt':
if suffix == ".pt":
self.model, self.ckpt = attempt_load_one_weight(weights)
self.task = self.model.args['task']
self.task = self.model.args["task"]
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
self.ckpt_path = self.model.pt_path
else:
@ -163,12 +167,12 @@ class Model(nn.Module):
self.model, self.ckpt = weights, None
self.task = task or guess_model_task(weights)
self.ckpt_path = weights
self.overrides['model'] = weights
self.overrides['task'] = self.task
self.overrides["model"] = weights
self.overrides["task"] = self.task
def _check_is_pytorch_model(self):
"""Raises TypeError is model is not a PyTorch model."""
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
pt_module = isinstance(self.model, nn.Module)
if not (pt_module or pt_str):
raise TypeError(
@ -176,19 +180,20 @@ class Model(nn.Module):
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'")
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
)
def reset_weights(self):
"""Resets the model modules parameters to randomly initialized values, losing all training information."""
self._check_is_pytorch_model()
for m in self.model.modules():
if hasattr(m, 'reset_parameters'):
if hasattr(m, "reset_parameters"):
m.reset_parameters()
for p in self.model.parameters():
p.requires_grad = True
return self
def load(self, weights='yolov8n.pt'):
def load(self, weights="yolov8n.pt"):
"""Transfers parameters with matching names and shapes from 'weights' to model."""
self._check_is_pytorch_model()
if isinstance(weights, (str, Path)):
@ -226,8 +231,8 @@ class Model(nn.Module):
Returns:
(List[torch.Tensor]): A list of image embeddings.
"""
if not kwargs.get('embed'):
kwargs['embed'] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
if not kwargs.get("embed"):
kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
return self.predict(source, stream, **kwargs)
def predict(self, source=None, stream=False, predictor=None, **kwargs):
@ -249,21 +254,22 @@ class Model(nn.Module):
source = ASSETS
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
is_cli = (sys.argv[0].endswith("yolo") or sys.argv[0].endswith("ultralytics")) and any(
x in sys.argv for x in ("predict", "track", "mode=predict", "mode=track")
)
custom = {'conf': 0.25, 'save': is_cli} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'predict'} # highest priority args on the right
prompts = args.pop('prompts', None) # for SAM-type models
custom = {"conf": 0.25, "save": is_cli} # method defaults
args = {**self.overrides, **custom, **kwargs, "mode": "predict"} # highest priority args on the right
prompts = args.pop("prompts", None) # for SAM-type models
if not self.predictor:
self.predictor = predictor or self._smart_load('predictor')(overrides=args, _callbacks=self.callbacks)
self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks)
self.predictor.setup_model(model=self.model, verbose=is_cli)
else: # only update args if predictor is already setup
self.predictor.args = get_cfg(self.predictor.args, args)
if 'project' in args or 'name' in args:
if "project" in args or "name" in args:
self.predictor.save_dir = get_save_dir(self.predictor.args)
if prompts and hasattr(self.predictor, 'set_prompts'): # for SAM-type models
if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models
self.predictor.set_prompts(prompts)
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
@ -280,11 +286,12 @@ class Model(nn.Module):
Returns:
(List[ultralytics.engine.results.Results]): The tracking results.
"""
if not hasattr(self.predictor, 'trackers'):
if not hasattr(self.predictor, "trackers"):
from ultralytics.trackers import register_tracker
register_tracker(self, persist)
kwargs['conf'] = kwargs.get('conf') or 0.1 # ByteTrack-based method needs low confidence predictions as input
kwargs['mode'] = 'track'
kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
kwargs["mode"] = "track"
return self.predict(source=source, stream=stream, **kwargs)
def val(self, validator=None, **kwargs):
@ -295,10 +302,10 @@ class Model(nn.Module):
validator (BaseValidator): Customized validator.
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
"""
custom = {'rect': True} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right
custom = {"rect": True} # method defaults
args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
validator = (validator or self._smart_load('validator'))(args=args, _callbacks=self.callbacks)
validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
validator(model=self.model)
self.metrics = validator.metrics
return validator.metrics
@ -313,16 +320,17 @@ class Model(nn.Module):
self._check_is_pytorch_model()
from ultralytics.utils.benchmarks import benchmark
custom = {'verbose': False} # method defaults
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, 'mode': 'benchmark'}
custom = {"verbose": False} # method defaults
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"}
return benchmark(
model=self,
data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets
imgsz=args['imgsz'],
half=args['half'],
int8=args['int8'],
device=args['device'],
verbose=kwargs.get('verbose'))
data=kwargs.get("data"), # if no 'data' argument passed set data=None for default datasets
imgsz=args["imgsz"],
half=args["half"],
int8=args["int8"],
device=args["device"],
verbose=kwargs.get("verbose"),
)
def export(self, **kwargs):
"""
@ -334,8 +342,8 @@ class Model(nn.Module):
self._check_is_pytorch_model()
from .exporter import Exporter
custom = {'imgsz': self.model.args['imgsz'], 'batch': 1, 'data': None, 'verbose': False} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'export'} # highest priority args on the right
custom = {"imgsz": self.model.args["imgsz"], "batch": 1, "data": None, "verbose": False} # method defaults
args = {**self.overrides, **custom, **kwargs, "mode": "export"} # highest priority args on the right
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
def train(self, trainer=None, **kwargs):
@ -347,32 +355,32 @@ class Model(nn.Module):
**kwargs (Any): Any number of arguments representing the training configuration.
"""
self._check_is_pytorch_model()
if hasattr(self.session, 'model') and self.session.model.id: # Ultralytics HUB session with loaded model
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
if any(kwargs):
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
LOGGER.warning("WARNING ⚠️ using HUB training arguments, ignoring local training arguments.")
kwargs = self.session.train_args # overwrite kwargs
checks.check_pip_update_available()
overrides = yaml_load(checks.check_yaml(kwargs['cfg'])) if kwargs.get('cfg') else self.overrides
custom = {'data': DEFAULT_CFG_DICT['data'] or TASK2DATA[self.task]} # method defaults
args = {**overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
if args.get('resume'):
args['resume'] = self.ckpt_path
overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
custom = {"data": DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task]} # method defaults
args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
if args.get("resume"):
args["resume"] = self.ckpt_path
self.trainer = (trainer or self._smart_load('trainer'))(overrides=args, _callbacks=self.callbacks)
if not args.get('resume'): # manually set model only if not resuming
self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
if not args.get("resume"): # manually set model only if not resuming
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
self.model = self.trainer.model
if SETTINGS['hub'] is True and not self.session:
if SETTINGS["hub"] is True and not self.session:
# Create a model in HUB
try:
self.session = self._get_hub_session(self.model_name)
if self.session:
self.session.create_model(args)
# Check model was created
if not getattr(self.session.model, 'id', None):
if not getattr(self.session.model, "id", None):
self.session = None
except PermissionError:
# Ignore permission error
@ -385,7 +393,7 @@ class Model(nn.Module):
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
self.model, _ = attempt_load_one_weight(ckpt)
self.overrides = self.model.args
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
return self.metrics
def tune(self, use_ray=False, iterations=10, *args, **kwargs):
@ -398,12 +406,13 @@ class Model(nn.Module):
self._check_is_pytorch_model()
if use_ray:
from ultralytics.utils.tuner import run_ray_tune
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
else:
from .tuner import Tuner
custom = {} # method defaults
args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
args = {**self.overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
def _apply(self, fn):
@ -411,13 +420,13 @@ class Model(nn.Module):
self._check_is_pytorch_model()
self = super()._apply(fn) # noqa
self.predictor = None # reset predictor as device may have changed
self.overrides['device'] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
return self
@property
def names(self):
"""Returns class names of the loaded model."""
return self.model.names if hasattr(self.model, 'names') else None
return self.model.names if hasattr(self.model, "names") else None
@property
def device(self):
@ -427,7 +436,7 @@ class Model(nn.Module):
@property
def transforms(self):
"""Returns transform of the loaded model."""
return self.model.transforms if hasattr(self.model, 'transforms') else None
return self.model.transforms if hasattr(self.model, "transforms") else None
def add_callback(self, event: str, func):
"""Add a callback."""
@ -445,7 +454,7 @@ class Model(nn.Module):
@staticmethod
def _reset_ckpt_args(args):
"""Reset arguments when loading a PyTorch model."""
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model
include = {"imgsz", "data", "task", "single_cls"} # only remember these arguments when loading a PyTorch model
return {k: v for k, v in args.items() if k in include}
# def __getattr__(self, attr):
@ -461,7 +470,8 @@ class Model(nn.Module):
name = self.__class__.__name__
mode = inspect.stack()[1][3] # get the function name.
raise NotImplementedError(
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")) from e
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")
) from e
@property
def task_map(self):
@ -471,4 +481,4 @@ class Model(nn.Module):
Returns:
task_map (dict): The map of model task to mode classes.
"""
raise NotImplementedError('Please provide task map for your model!')
raise NotImplementedError("Please provide task map for your model!")