ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
parent
e795277391
commit
fe27db2f6e
139 changed files with 6870 additions and 5125 deletions
|
|
@ -53,7 +53,7 @@ class Model(nn.Module):
|
|||
list(ultralytics.engine.results.Results): The prediction results.
|
||||
"""
|
||||
|
||||
def __init__(self, model: Union[str, Path] = 'yolov8n.pt', task=None) -> None:
|
||||
def __init__(self, model: Union[str, Path] = "yolov8n.pt", task=None) -> None:
|
||||
"""
|
||||
Initializes the YOLO model.
|
||||
|
||||
|
|
@ -89,7 +89,7 @@ class Model(nn.Module):
|
|||
|
||||
# Load or create new YOLO model
|
||||
model = checks.check_model_file_from_stem(model) # add suffix, i.e. yolov8n -> yolov8n.pt
|
||||
if Path(model).suffix in ('.yaml', '.yml'):
|
||||
if Path(model).suffix in (".yaml", ".yml"):
|
||||
self._new(model, task)
|
||||
else:
|
||||
self._load(model, task)
|
||||
|
|
@ -112,16 +112,20 @@ class Model(nn.Module):
|
|||
def is_triton_model(model):
|
||||
"""Is model a Triton Server URL string, i.e. <scheme>://<netloc>/<endpoint>/<task_name>"""
|
||||
from urllib.parse import urlsplit
|
||||
|
||||
url = urlsplit(model)
|
||||
return url.netloc and url.path and url.scheme in {'http', 'grpc'}
|
||||
return url.netloc and url.path and url.scheme in {"http", "grpc"}
|
||||
|
||||
@staticmethod
|
||||
def is_hub_model(model):
|
||||
"""Check if the provided model is a HUB model."""
|
||||
return any((
|
||||
model.startswith(f'{HUB_WEB_ROOT}/models/'), # i.e. https://hub.ultralytics.com/models/MODEL_ID
|
||||
[len(x) for x in model.split('_')] == [42, 20], # APIKEY_MODELID
|
||||
len(model) == 20 and not Path(model).exists() and all(x not in model for x in './\\'))) # MODELID
|
||||
return any(
|
||||
(
|
||||
model.startswith(f"{HUB_WEB_ROOT}/models/"), # i.e. https://hub.ultralytics.com/models/MODEL_ID
|
||||
[len(x) for x in model.split("_")] == [42, 20], # APIKEY_MODELID
|
||||
len(model) == 20 and not Path(model).exists() and all(x not in model for x in "./\\"),
|
||||
)
|
||||
) # MODELID
|
||||
|
||||
def _new(self, cfg: str, task=None, model=None, verbose=True):
|
||||
"""
|
||||
|
|
@ -136,9 +140,9 @@ class Model(nn.Module):
|
|||
cfg_dict = yaml_model_load(cfg)
|
||||
self.cfg = cfg
|
||||
self.task = task or guess_model_task(cfg_dict)
|
||||
self.model = (model or self._smart_load('model'))(cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
self.overrides['model'] = self.cfg
|
||||
self.overrides['task'] = self.task
|
||||
self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model
|
||||
self.overrides["model"] = self.cfg
|
||||
self.overrides["task"] = self.task
|
||||
|
||||
# Below added to allow export from YAMLs
|
||||
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
|
||||
|
|
@ -153,9 +157,9 @@ class Model(nn.Module):
|
|||
task (str | None): model task
|
||||
"""
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == '.pt':
|
||||
if suffix == ".pt":
|
||||
self.model, self.ckpt = attempt_load_one_weight(weights)
|
||||
self.task = self.model.args['task']
|
||||
self.task = self.model.args["task"]
|
||||
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
|
||||
self.ckpt_path = self.model.pt_path
|
||||
else:
|
||||
|
|
@ -163,12 +167,12 @@ class Model(nn.Module):
|
|||
self.model, self.ckpt = weights, None
|
||||
self.task = task or guess_model_task(weights)
|
||||
self.ckpt_path = weights
|
||||
self.overrides['model'] = weights
|
||||
self.overrides['task'] = self.task
|
||||
self.overrides["model"] = weights
|
||||
self.overrides["task"] = self.task
|
||||
|
||||
def _check_is_pytorch_model(self):
|
||||
"""Raises TypeError is model is not a PyTorch model."""
|
||||
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt'
|
||||
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
|
||||
pt_module = isinstance(self.model, nn.Module)
|
||||
if not (pt_module or pt_str):
|
||||
raise TypeError(
|
||||
|
|
@ -176,19 +180,20 @@ class Model(nn.Module):
|
|||
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
|
||||
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
|
||||
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
|
||||
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'")
|
||||
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
|
||||
)
|
||||
|
||||
def reset_weights(self):
|
||||
"""Resets the model modules parameters to randomly initialized values, losing all training information."""
|
||||
self._check_is_pytorch_model()
|
||||
for m in self.model.modules():
|
||||
if hasattr(m, 'reset_parameters'):
|
||||
if hasattr(m, "reset_parameters"):
|
||||
m.reset_parameters()
|
||||
for p in self.model.parameters():
|
||||
p.requires_grad = True
|
||||
return self
|
||||
|
||||
def load(self, weights='yolov8n.pt'):
|
||||
def load(self, weights="yolov8n.pt"):
|
||||
"""Transfers parameters with matching names and shapes from 'weights' to model."""
|
||||
self._check_is_pytorch_model()
|
||||
if isinstance(weights, (str, Path)):
|
||||
|
|
@ -226,8 +231,8 @@ class Model(nn.Module):
|
|||
Returns:
|
||||
(List[torch.Tensor]): A list of image embeddings.
|
||||
"""
|
||||
if not kwargs.get('embed'):
|
||||
kwargs['embed'] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
|
||||
if not kwargs.get("embed"):
|
||||
kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
|
||||
return self.predict(source, stream, **kwargs)
|
||||
|
||||
def predict(self, source=None, stream=False, predictor=None, **kwargs):
|
||||
|
|
@ -249,21 +254,22 @@ class Model(nn.Module):
|
|||
source = ASSETS
|
||||
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
||||
|
||||
is_cli = (sys.argv[0].endswith('yolo') or sys.argv[0].endswith('ultralytics')) and any(
|
||||
x in sys.argv for x in ('predict', 'track', 'mode=predict', 'mode=track'))
|
||||
is_cli = (sys.argv[0].endswith("yolo") or sys.argv[0].endswith("ultralytics")) and any(
|
||||
x in sys.argv for x in ("predict", "track", "mode=predict", "mode=track")
|
||||
)
|
||||
|
||||
custom = {'conf': 0.25, 'save': is_cli} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'predict'} # highest priority args on the right
|
||||
prompts = args.pop('prompts', None) # for SAM-type models
|
||||
custom = {"conf": 0.25, "save": is_cli} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, "mode": "predict"} # highest priority args on the right
|
||||
prompts = args.pop("prompts", None) # for SAM-type models
|
||||
|
||||
if not self.predictor:
|
||||
self.predictor = predictor or self._smart_load('predictor')(overrides=args, _callbacks=self.callbacks)
|
||||
self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks)
|
||||
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
||||
else: # only update args if predictor is already setup
|
||||
self.predictor.args = get_cfg(self.predictor.args, args)
|
||||
if 'project' in args or 'name' in args:
|
||||
if "project" in args or "name" in args:
|
||||
self.predictor.save_dir = get_save_dir(self.predictor.args)
|
||||
if prompts and hasattr(self.predictor, 'set_prompts'): # for SAM-type models
|
||||
if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models
|
||||
self.predictor.set_prompts(prompts)
|
||||
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
||||
|
||||
|
|
@ -280,11 +286,12 @@ class Model(nn.Module):
|
|||
Returns:
|
||||
(List[ultralytics.engine.results.Results]): The tracking results.
|
||||
"""
|
||||
if not hasattr(self.predictor, 'trackers'):
|
||||
if not hasattr(self.predictor, "trackers"):
|
||||
from ultralytics.trackers import register_tracker
|
||||
|
||||
register_tracker(self, persist)
|
||||
kwargs['conf'] = kwargs.get('conf') or 0.1 # ByteTrack-based method needs low confidence predictions as input
|
||||
kwargs['mode'] = 'track'
|
||||
kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
|
||||
kwargs["mode"] = "track"
|
||||
return self.predict(source=source, stream=stream, **kwargs)
|
||||
|
||||
def val(self, validator=None, **kwargs):
|
||||
|
|
@ -295,10 +302,10 @@ class Model(nn.Module):
|
|||
validator (BaseValidator): Customized validator.
|
||||
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
|
||||
"""
|
||||
custom = {'rect': True} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'val'} # highest priority args on the right
|
||||
custom = {"rect": True} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
|
||||
|
||||
validator = (validator or self._smart_load('validator'))(args=args, _callbacks=self.callbacks)
|
||||
validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
|
||||
validator(model=self.model)
|
||||
self.metrics = validator.metrics
|
||||
return validator.metrics
|
||||
|
|
@ -313,16 +320,17 @@ class Model(nn.Module):
|
|||
self._check_is_pytorch_model()
|
||||
from ultralytics.utils.benchmarks import benchmark
|
||||
|
||||
custom = {'verbose': False} # method defaults
|
||||
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, 'mode': 'benchmark'}
|
||||
custom = {"verbose": False} # method defaults
|
||||
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"}
|
||||
return benchmark(
|
||||
model=self,
|
||||
data=kwargs.get('data'), # if no 'data' argument passed set data=None for default datasets
|
||||
imgsz=args['imgsz'],
|
||||
half=args['half'],
|
||||
int8=args['int8'],
|
||||
device=args['device'],
|
||||
verbose=kwargs.get('verbose'))
|
||||
data=kwargs.get("data"), # if no 'data' argument passed set data=None for default datasets
|
||||
imgsz=args["imgsz"],
|
||||
half=args["half"],
|
||||
int8=args["int8"],
|
||||
device=args["device"],
|
||||
verbose=kwargs.get("verbose"),
|
||||
)
|
||||
|
||||
def export(self, **kwargs):
|
||||
"""
|
||||
|
|
@ -334,8 +342,8 @@ class Model(nn.Module):
|
|||
self._check_is_pytorch_model()
|
||||
from .exporter import Exporter
|
||||
|
||||
custom = {'imgsz': self.model.args['imgsz'], 'batch': 1, 'data': None, 'verbose': False} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'export'} # highest priority args on the right
|
||||
custom = {"imgsz": self.model.args["imgsz"], "batch": 1, "data": None, "verbose": False} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, "mode": "export"} # highest priority args on the right
|
||||
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
|
||||
|
||||
def train(self, trainer=None, **kwargs):
|
||||
|
|
@ -347,32 +355,32 @@ class Model(nn.Module):
|
|||
**kwargs (Any): Any number of arguments representing the training configuration.
|
||||
"""
|
||||
self._check_is_pytorch_model()
|
||||
if hasattr(self.session, 'model') and self.session.model.id: # Ultralytics HUB session with loaded model
|
||||
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
|
||||
if any(kwargs):
|
||||
LOGGER.warning('WARNING ⚠️ using HUB training arguments, ignoring local training arguments.')
|
||||
LOGGER.warning("WARNING ⚠️ using HUB training arguments, ignoring local training arguments.")
|
||||
kwargs = self.session.train_args # overwrite kwargs
|
||||
|
||||
checks.check_pip_update_available()
|
||||
|
||||
overrides = yaml_load(checks.check_yaml(kwargs['cfg'])) if kwargs.get('cfg') else self.overrides
|
||||
custom = {'data': DEFAULT_CFG_DICT['data'] or TASK2DATA[self.task]} # method defaults
|
||||
args = {**overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
|
||||
if args.get('resume'):
|
||||
args['resume'] = self.ckpt_path
|
||||
overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
|
||||
custom = {"data": DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task]} # method defaults
|
||||
args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
|
||||
if args.get("resume"):
|
||||
args["resume"] = self.ckpt_path
|
||||
|
||||
self.trainer = (trainer or self._smart_load('trainer'))(overrides=args, _callbacks=self.callbacks)
|
||||
if not args.get('resume'): # manually set model only if not resuming
|
||||
self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
|
||||
if not args.get("resume"): # manually set model only if not resuming
|
||||
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
||||
self.model = self.trainer.model
|
||||
|
||||
if SETTINGS['hub'] is True and not self.session:
|
||||
if SETTINGS["hub"] is True and not self.session:
|
||||
# Create a model in HUB
|
||||
try:
|
||||
self.session = self._get_hub_session(self.model_name)
|
||||
if self.session:
|
||||
self.session.create_model(args)
|
||||
# Check model was created
|
||||
if not getattr(self.session.model, 'id', None):
|
||||
if not getattr(self.session.model, "id", None):
|
||||
self.session = None
|
||||
except PermissionError:
|
||||
# Ignore permission error
|
||||
|
|
@ -385,7 +393,7 @@ class Model(nn.Module):
|
|||
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
|
||||
self.model, _ = attempt_load_one_weight(ckpt)
|
||||
self.overrides = self.model.args
|
||||
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP
|
||||
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
|
||||
return self.metrics
|
||||
|
||||
def tune(self, use_ray=False, iterations=10, *args, **kwargs):
|
||||
|
|
@ -398,12 +406,13 @@ class Model(nn.Module):
|
|||
self._check_is_pytorch_model()
|
||||
if use_ray:
|
||||
from ultralytics.utils.tuner import run_ray_tune
|
||||
|
||||
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
|
||||
else:
|
||||
from .tuner import Tuner
|
||||
|
||||
custom = {} # method defaults
|
||||
args = {**self.overrides, **custom, **kwargs, 'mode': 'train'} # highest priority args on the right
|
||||
args = {**self.overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
|
||||
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
|
||||
|
||||
def _apply(self, fn):
|
||||
|
|
@ -411,13 +420,13 @@ class Model(nn.Module):
|
|||
self._check_is_pytorch_model()
|
||||
self = super()._apply(fn) # noqa
|
||||
self.predictor = None # reset predictor as device may have changed
|
||||
self.overrides['device'] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
|
||||
self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
|
||||
return self
|
||||
|
||||
@property
|
||||
def names(self):
|
||||
"""Returns class names of the loaded model."""
|
||||
return self.model.names if hasattr(self.model, 'names') else None
|
||||
return self.model.names if hasattr(self.model, "names") else None
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
|
|
@ -427,7 +436,7 @@ class Model(nn.Module):
|
|||
@property
|
||||
def transforms(self):
|
||||
"""Returns transform of the loaded model."""
|
||||
return self.model.transforms if hasattr(self.model, 'transforms') else None
|
||||
return self.model.transforms if hasattr(self.model, "transforms") else None
|
||||
|
||||
def add_callback(self, event: str, func):
|
||||
"""Add a callback."""
|
||||
|
|
@ -445,7 +454,7 @@ class Model(nn.Module):
|
|||
@staticmethod
|
||||
def _reset_ckpt_args(args):
|
||||
"""Reset arguments when loading a PyTorch model."""
|
||||
include = {'imgsz', 'data', 'task', 'single_cls'} # only remember these arguments when loading a PyTorch model
|
||||
include = {"imgsz", "data", "task", "single_cls"} # only remember these arguments when loading a PyTorch model
|
||||
return {k: v for k, v in args.items() if k in include}
|
||||
|
||||
# def __getattr__(self, attr):
|
||||
|
|
@ -461,7 +470,8 @@ class Model(nn.Module):
|
|||
name = self.__class__.__name__
|
||||
mode = inspect.stack()[1][3] # get the function name.
|
||||
raise NotImplementedError(
|
||||
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")) from e
|
||||
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")
|
||||
) from e
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
|
|
@ -471,4 +481,4 @@ class Model(nn.Module):
|
|||
Returns:
|
||||
task_map (dict): The map of model task to mode classes.
|
||||
"""
|
||||
raise NotImplementedError('Please provide task map for your model!')
|
||||
raise NotImplementedError("Please provide task map for your model!")
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue