ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-10 03:16:08 +01:00 committed by GitHub
parent e795277391
commit fe27db2f6e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
139 changed files with 6870 additions and 5125 deletions

View file

@ -14,7 +14,7 @@ from tqdm import tqdm
from ultralytics.data.utils import exif_size, img2label_paths
from ultralytics.utils.checks import check_requirements
check_requirements('shapely')
check_requirements("shapely")
from shapely.geometry import Polygon
@ -54,7 +54,7 @@ def bbox_iof(polygon1, bbox2, eps=1e-6):
return outputs
def load_yolo_dota(data_root, split='train'):
def load_yolo_dota(data_root, split="train"):
"""
Load DOTA dataset.
@ -72,10 +72,10 @@ def load_yolo_dota(data_root, split='train'):
- train
- val
"""
assert split in ['train', 'val']
im_dir = os.path.join(data_root, f'images/{split}')
assert split in ["train", "val"]
im_dir = os.path.join(data_root, f"images/{split}")
assert Path(im_dir).exists(), f"Can't find {im_dir}, please check your data root."
im_files = glob(os.path.join(data_root, f'images/{split}/*'))
im_files = glob(os.path.join(data_root, f"images/{split}/*"))
lb_files = img2label_paths(im_files)
annos = []
for im_file, lb_file in zip(im_files, lb_files):
@ -100,7 +100,7 @@ def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.0
h, w = im_size
windows = []
for crop_size, gap in zip(crop_sizes, gaps):
assert crop_size > gap, f'invaild crop_size gap pair [{crop_size} {gap}]'
assert crop_size > gap, f"invalid crop_size gap pair [{crop_size} {gap}]"
step = crop_size - gap
xn = 1 if w <= crop_size else ceil((w - crop_size) / step + 1)
@ -132,8 +132,8 @@ def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.0
def get_window_obj(anno, windows, iof_thr=0.7):
"""Get objects for each window."""
h, w = anno['ori_size']
label = anno['label']
h, w = anno["ori_size"]
label = anno["label"]
if len(label):
label[:, 1::2] *= w
label[:, 2::2] *= h
@ -166,15 +166,15 @@ def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
- train
- val
"""
im = cv2.imread(anno['filepath'])
name = Path(anno['filepath']).stem
im = cv2.imread(anno["filepath"])
name = Path(anno["filepath"]).stem
for i, window in enumerate(windows):
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = name + '__' + str(x_stop - x_start) + '__' + str(x_start) + '___' + str(y_start)
new_name = name + "__" + str(x_stop - x_start) + "__" + str(x_start) + "___" + str(y_start)
patch_im = im[y_start:y_stop, x_start:x_stop]
ph, pw = patch_im.shape[:2]
cv2.imwrite(os.path.join(im_dir, f'{new_name}.jpg'), patch_im)
cv2.imwrite(os.path.join(im_dir, f"{new_name}.jpg"), patch_im)
label = window_objs[i]
if len(label) == 0:
continue
@ -183,13 +183,13 @@ def crop_and_save(anno, windows, window_objs, im_dir, lb_dir):
label[:, 1::2] /= pw
label[:, 2::2] /= ph
with open(os.path.join(lb_dir, f'{new_name}.txt'), 'w') as f:
with open(os.path.join(lb_dir, f"{new_name}.txt"), "w") as f:
for lb in label:
formatted_coords = ['{:.6g}'.format(coord) for coord in lb[1:]]
formatted_coords = ["{:.6g}".format(coord) for coord in lb[1:]]
f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n")
def split_images_and_labels(data_root, save_dir, split='train', crop_sizes=[1024], gaps=[200]):
def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=[1024], gaps=[200]):
"""
Split both images and labels.
@ -207,14 +207,14 @@ def split_images_and_labels(data_root, save_dir, split='train', crop_sizes=[1024
- labels
- split
"""
im_dir = Path(save_dir) / 'images' / split
im_dir = Path(save_dir) / "images" / split
im_dir.mkdir(parents=True, exist_ok=True)
lb_dir = Path(save_dir) / 'labels' / split
lb_dir = Path(save_dir) / "labels" / split
lb_dir.mkdir(parents=True, exist_ok=True)
annos = load_yolo_dota(data_root, split=split)
for anno in tqdm(annos, total=len(annos), desc=split):
windows = get_windows(anno['ori_size'], crop_sizes, gaps)
windows = get_windows(anno["ori_size"], crop_sizes, gaps)
window_objs = get_window_obj(anno, windows)
crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir))
@ -245,7 +245,7 @@ def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
for r in rates:
crop_sizes.append(int(crop_size / r))
gaps.append(int(gap / r))
for split in ['train', 'val']:
for split in ["train", "val"]:
split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps)
@ -267,30 +267,30 @@ def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]):
for r in rates:
crop_sizes.append(int(crop_size / r))
gaps.append(int(gap / r))
save_dir = Path(save_dir) / 'images' / 'test'
save_dir = Path(save_dir) / "images" / "test"
save_dir.mkdir(parents=True, exist_ok=True)
im_dir = Path(os.path.join(data_root, 'images/test'))
im_dir = Path(os.path.join(data_root, "images/test"))
assert im_dir.exists(), f"Can't find {str(im_dir)}, please check your data root."
im_files = glob(str(im_dir / '*'))
for im_file in tqdm(im_files, total=len(im_files), desc='test'):
im_files = glob(str(im_dir / "*"))
for im_file in tqdm(im_files, total=len(im_files), desc="test"):
w, h = exif_size(Image.open(im_file))
windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps)
im = cv2.imread(im_file)
name = Path(im_file).stem
for window in windows:
x_start, y_start, x_stop, y_stop = window.tolist()
new_name = (name + '__' + str(x_stop - x_start) + '__' + str(x_start) + '___' + str(y_start))
new_name = name + "__" + str(x_stop - x_start) + "__" + str(x_start) + "___" + str(y_start)
patch_im = im[y_start:y_stop, x_start:x_stop]
cv2.imwrite(os.path.join(str(save_dir), f'{new_name}.jpg'), patch_im)
cv2.imwrite(os.path.join(str(save_dir), f"{new_name}.jpg"), patch_im)
if __name__ == '__main__':
if __name__ == "__main__":
split_trainval(
data_root='DOTAv2',
save_dir='DOTAv2-split',
data_root="DOTAv2",
save_dir="DOTAv2-split",
)
split_test(
data_root='DOTAv2',
save_dir='DOTAv2-split',
data_root="DOTAv2",
save_dir="DOTAv2-split",
)