ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-10 03:16:08 +01:00 committed by GitHub
parent e795277391
commit fe27db2f6e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
139 changed files with 6870 additions and 5125 deletions

View file

@ -9,8 +9,16 @@ import torch
from PIL import Image
from torch.utils.data import dataloader, distributed
from ultralytics.data.loaders import (LOADERS, LoadImages, LoadPilAndNumpy, LoadScreenshots, LoadStreams, LoadTensor,
SourceTypes, autocast_list)
from ultralytics.data.loaders import (
LOADERS,
LoadImages,
LoadPilAndNumpy,
LoadScreenshots,
LoadStreams,
LoadTensor,
SourceTypes,
autocast_list,
)
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.utils import RANK, colorstr
from ultralytics.utils.checks import check_file
@ -29,7 +37,7 @@ class InfiniteDataLoader(dataloader.DataLoader):
def __init__(self, *args, **kwargs):
"""Dataloader that infinitely recycles workers, inherits from DataLoader."""
super().__init__(*args, **kwargs)
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
self.iterator = super().__iter__()
def __len__(self):
@ -70,29 +78,30 @@ class _RepeatSampler:
def seed_worker(worker_id): # noqa
"""Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
worker_seed = torch.initial_seed() % 2 ** 32
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def build_yolo_dataset(cfg, img_path, batch, data, mode='train', rect=False, stride=32):
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32):
"""Build YOLO Dataset."""
return YOLODataset(
img_path=img_path,
imgsz=cfg.imgsz,
batch_size=batch,
augment=mode == 'train', # augmentation
augment=mode == "train", # augmentation
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
rect=cfg.rect or rect, # rectangular batches
cache=cfg.cache or None,
single_cls=cfg.single_cls or False,
stride=int(stride),
pad=0.0 if mode == 'train' else 0.5,
prefix=colorstr(f'{mode}: '),
pad=0.0 if mode == "train" else 0.5,
prefix=colorstr(f"{mode}: "),
task=cfg.task,
classes=cfg.classes,
data=data,
fraction=cfg.fraction if mode == 'train' else 1.0)
fraction=cfg.fraction if mode == "train" else 1.0,
)
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
@ -103,15 +112,17 @@ def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
generator = torch.Generator()
generator.manual_seed(6148914691236517205 + RANK)
return InfiniteDataLoader(dataset=dataset,
batch_size=batch,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, 'collate_fn', None),
worker_init_fn=seed_worker,
generator=generator)
return InfiniteDataLoader(
dataset=dataset,
batch_size=batch,
shuffle=shuffle and sampler is None,
num_workers=nw,
sampler=sampler,
pin_memory=PIN_MEMORY,
collate_fn=getattr(dataset, "collate_fn", None),
worker_init_fn=seed_worker,
generator=generator,
)
def check_source(source):
@ -120,9 +131,9 @@ def check_source(source):
if isinstance(source, (str, int, Path)): # int for local usb camera
source = str(source)
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://', 'tcp://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
screenshot = source.lower() == 'screen'
is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
screenshot = source.lower() == "screen"
if is_url and is_file:
source = check_file(source) # download
elif isinstance(source, LOADERS):
@ -135,7 +146,7 @@ def check_source(source):
elif isinstance(source, torch.Tensor):
tensor = True
else:
raise TypeError('Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict')
raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")
return source, webcam, screenshot, from_img, in_memory, tensor
@ -171,6 +182,6 @@ def load_inference_source(source=None, imgsz=640, vid_stride=1, buffer=False):
dataset = LoadImages(source, imgsz=imgsz, vid_stride=vid_stride)
# Attach source types to the dataset
setattr(dataset, 'source_type', source_type)
setattr(dataset, "source_type", source_type)
return dataset