ultralytics 8.0.239 Ultralytics Actions and hub-sdk adoption (#7431)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-10 03:16:08 +01:00 committed by GitHub
parent e795277391
commit fe27db2f6e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
139 changed files with 6870 additions and 5125 deletions

View file

@ -13,14 +13,9 @@ img_height = 640
class LetterBox:
def __init__(self,
new_shape=(img_width, img_height),
auto=False,
scaleFill=False,
scaleup=True,
center=True,
stride=32):
def __init__(
self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32
):
self.new_shape = new_shape
self.auto = auto
self.scaleFill = scaleFill
@ -33,9 +28,9 @@ class LetterBox:
if labels is None:
labels = {}
img = labels.get('img') if image is None else image
img = labels.get("img") if image is None else image
shape = img.shape[:2] # current shape [height, width]
new_shape = labels.pop('rect_shape', self.new_shape)
new_shape = labels.pop("rect_shape", self.new_shape)
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
@ -63,15 +58,16 @@ class LetterBox:
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT,
value=(114, 114, 114)) # add border
if labels.get('ratio_pad'):
labels['ratio_pad'] = (labels['ratio_pad'], (left, top)) # for evaluation
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
) # add border
if labels.get("ratio_pad"):
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
if len(labels):
labels = self._update_labels(labels, ratio, dw, dh)
labels['img'] = img
labels['resized_shape'] = new_shape
labels["img"] = img
labels["resized_shape"] = new_shape
return labels
else:
return img
@ -79,15 +75,14 @@ class LetterBox:
def _update_labels(self, labels, ratio, padw, padh):
"""Update labels."""
labels['instances'].convert_bbox(format='xyxy')
labels['instances'].denormalize(*labels['img'].shape[:2][::-1])
labels['instances'].scale(*ratio)
labels['instances'].add_padding(padw, padh)
labels["instances"].convert_bbox(format="xyxy")
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
labels["instances"].scale(*ratio)
labels["instances"].add_padding(padw, padh)
return labels
class Yolov8TFLite:
def __init__(self, tflite_model, input_image, confidence_thres, iou_thres):
"""
Initializes an instance of the Yolov8TFLite class.
@ -105,7 +100,7 @@ class Yolov8TFLite:
self.iou_thres = iou_thres
# Load the class names from the COCO dataset
self.classes = yaml_load(check_yaml('coco128.yaml'))['names']
self.classes = yaml_load(check_yaml("coco128.yaml"))["names"]
# Generate a color palette for the classes
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))
@ -134,7 +129,7 @@ class Yolov8TFLite:
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)
# Create the label text with class name and score
label = f'{self.classes[class_id]}: {score:.2f}'
label = f"{self.classes[class_id]}: {score:.2f}"
# Calculate the dimensions of the label text
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
@ -144,8 +139,13 @@ class Yolov8TFLite:
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10
# Draw a filled rectangle as the background for the label text
cv2.rectangle(img, (int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)), color, cv2.FILLED)
cv2.rectangle(
img,
(int(label_x), int(label_y - label_height)),
(int(label_x + label_width), int(label_y + label_height)),
color,
cv2.FILLED,
)
# Draw the label text on the image
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
@ -161,7 +161,7 @@ class Yolov8TFLite:
# Read the input image using OpenCV
self.img = cv2.imread(self.input_image)
print('image befor', self.img)
print("image before", self.img)
# Get the height and width of the input image
self.img_height, self.img_width = self.img.shape[:2]
@ -209,8 +209,10 @@ class Yolov8TFLite:
# Get the box, score, and class ID corresponding to the index
box = boxes[i]
gain = min(img_width / self.img_width, img_height / self.img_height)
pad = round((img_width - self.img_width * gain) / 2 -
0.1), round((img_height - self.img_height * gain) / 2 - 0.1)
pad = (
round((img_width - self.img_width * gain) / 2 - 0.1),
round((img_height - self.img_height * gain) / 2 - 0.1),
)
box[0] = (box[0] - pad[0]) / gain
box[1] = (box[1] - pad[1]) / gain
box[2] = box[2] / gain
@ -242,7 +244,7 @@ class Yolov8TFLite:
output_details = interpreter.get_output_details()
# Store the shape of the input for later use
input_shape = input_details[0]['shape']
input_shape = input_details[0]["shape"]
self.input_width = input_shape[1]
self.input_height = input_shape[2]
@ -251,19 +253,19 @@ class Yolov8TFLite:
img_data = img_data
# img_data = img_data.cpu().numpy()
# Set the input tensor to the interpreter
print(input_details[0]['index'])
print(input_details[0]["index"])
print(img_data.shape)
img_data = img_data.transpose((0, 2, 3, 1))
scale, zero_point = input_details[0]['quantization']
interpreter.set_tensor(input_details[0]['index'], img_data)
scale, zero_point = input_details[0]["quantization"]
interpreter.set_tensor(input_details[0]["index"], img_data)
# Run inference
interpreter.invoke()
# Get the output tensor from the interpreter
output = interpreter.get_tensor(output_details[0]['index'])
scale, zero_point = output_details[0]['quantization']
output = interpreter.get_tensor(output_details[0]["index"])
scale, zero_point = output_details[0]["quantization"]
output = (output.astype(np.float32) - zero_point) * scale
output[:, [0, 2]] *= img_width
@ -273,16 +275,15 @@ class Yolov8TFLite:
return self.postprocess(self.img, output)
if __name__ == '__main__':
if __name__ == "__main__":
# Create an argument parser to handle command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--model',
type=str,
default='yolov8n_full_integer_quant.tflite',
help='Input your TFLite model.')
parser.add_argument('--img', type=str, default=str(ASSETS / 'bus.jpg'), help='Path to input image.')
parser.add_argument('--conf-thres', type=float, default=0.5, help='Confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
parser.add_argument(
"--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model."
)
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.")
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold")
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold")
args = parser.parse_args()
# Create an instance of the Yolov8TFLite class with the specified arguments
@ -292,7 +293,7 @@ if __name__ == '__main__':
output_image = detection.main()
# Display the output image in a window
cv2.imshow('Output', output_image)
cv2.imshow("Output", output_image)
# Wait for a key press to exit
cv2.waitKey(0)