[Example] YOLOv8-ONNXRuntime-Rust example (#6583)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
3c277347e4
commit
fdcf0dd4fd
8 changed files with 1888 additions and 0 deletions
534
examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs
Normal file
534
examples/YOLOv8-ONNXRuntime-Rust/src/ort_backend.rs
Normal file
|
|
@ -0,0 +1,534 @@
|
|||
use anyhow::Result;
|
||||
use clap::ValueEnum;
|
||||
use half::f16;
|
||||
use ndarray::{Array, CowArray, IxDyn};
|
||||
use ort::execution_providers::{CUDAExecutionProviderOptions, TensorRTExecutionProviderOptions};
|
||||
use ort::tensor::TensorElementDataType;
|
||||
use ort::{Environment, ExecutionProvider, Session, SessionBuilder, Value};
|
||||
use regex::Regex;
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
|
||||
pub enum YOLOTask {
|
||||
// YOLO tasks
|
||||
Classify,
|
||||
Detect,
|
||||
Pose,
|
||||
Segment,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
|
||||
pub enum OrtEP {
|
||||
// ONNXRuntime execution provider
|
||||
Cpu,
|
||||
Cuda(u32),
|
||||
Trt(u32),
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Batch {
|
||||
pub opt: u32,
|
||||
pub min: u32,
|
||||
pub max: u32,
|
||||
}
|
||||
|
||||
impl Default for Batch {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
opt: 1,
|
||||
min: 1,
|
||||
max: 1,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Default)]
|
||||
pub struct OrtInputs {
|
||||
// ONNX model inputs attrs
|
||||
pub shapes: Vec<Vec<i32>>,
|
||||
pub dtypes: Vec<TensorElementDataType>,
|
||||
pub names: Vec<String>,
|
||||
pub sizes: Vec<Vec<u32>>,
|
||||
}
|
||||
|
||||
impl OrtInputs {
|
||||
pub fn new(session: &Session) -> Self {
|
||||
let mut shapes = Vec::new();
|
||||
let mut dtypes = Vec::new();
|
||||
let mut names = Vec::new();
|
||||
for i in session.inputs.iter() {
|
||||
let shape: Vec<i32> = i
|
||||
.dimensions()
|
||||
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
|
||||
.collect();
|
||||
shapes.push(shape);
|
||||
dtypes.push(i.input_type);
|
||||
names.push(i.name.clone());
|
||||
}
|
||||
Self {
|
||||
shapes,
|
||||
dtypes,
|
||||
names,
|
||||
..Default::default()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct OrtConfig {
|
||||
// ORT config
|
||||
pub f: String,
|
||||
pub task: Option<YOLOTask>,
|
||||
pub ep: OrtEP,
|
||||
pub trt_fp16: bool,
|
||||
pub batch: Batch,
|
||||
pub image_size: (Option<u32>, Option<u32>),
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct OrtBackend {
|
||||
// ORT engine
|
||||
session: Session,
|
||||
task: YOLOTask,
|
||||
ep: OrtEP,
|
||||
batch: Batch,
|
||||
inputs: OrtInputs,
|
||||
}
|
||||
|
||||
impl OrtBackend {
|
||||
pub fn build(args: OrtConfig) -> Result<Self> {
|
||||
// build env & session
|
||||
let env = Environment::builder()
|
||||
.with_name("YOLOv8")
|
||||
.with_log_level(ort::LoggingLevel::Verbose)
|
||||
.build()?
|
||||
.into_arc();
|
||||
let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
|
||||
|
||||
// get inputs
|
||||
let mut inputs = OrtInputs::new(&session);
|
||||
|
||||
// batch size
|
||||
let mut batch = args.batch;
|
||||
let batch = if inputs.shapes[0][0] == -1 {
|
||||
batch
|
||||
} else {
|
||||
assert_eq!(
|
||||
inputs.shapes[0][0] as u32, batch.opt,
|
||||
"Expected batch size: {}, got {}. Try using `--batch {}`.",
|
||||
inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32
|
||||
);
|
||||
batch.opt = inputs.shapes[0][0] as u32;
|
||||
batch
|
||||
};
|
||||
|
||||
// input size: height and width
|
||||
let height = if inputs.shapes[0][2] == -1 {
|
||||
match args.image_size.0 {
|
||||
Some(height) => height,
|
||||
None => panic!("Failed to get model height. Make it explicit with `--height`"),
|
||||
}
|
||||
} else {
|
||||
inputs.shapes[0][2] as u32
|
||||
};
|
||||
let width = if inputs.shapes[0][3] == -1 {
|
||||
match args.image_size.1 {
|
||||
Some(width) => width,
|
||||
None => panic!("Failed to get model width. Make it explicit with `--width`"),
|
||||
}
|
||||
} else {
|
||||
inputs.shapes[0][3] as u32
|
||||
};
|
||||
inputs.sizes.push(vec![height, width]);
|
||||
|
||||
// build provider
|
||||
let (ep, provider) = match args.ep {
|
||||
OrtEP::Cuda(device_id) => Self::set_ep_cuda(device_id),
|
||||
OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
|
||||
_ => (OrtEP::Cpu, ExecutionProvider::CPU(Default::default())),
|
||||
};
|
||||
|
||||
// build session again with the new provider
|
||||
let session = SessionBuilder::new(&env)?
|
||||
// .with_optimization_level(ort::GraphOptimizationLevel::Level3)?
|
||||
.with_execution_providers([provider])?
|
||||
.with_model_from_file(args.f)?;
|
||||
|
||||
// task: using given one or guessing
|
||||
let task = match args.task {
|
||||
Some(task) => task,
|
||||
None => match session.metadata() {
|
||||
Err(_) => panic!("No metadata found. Try making it explicit by `--task`"),
|
||||
Ok(metadata) => match metadata.custom("task") {
|
||||
Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"),
|
||||
Ok(value) => match value {
|
||||
None => panic!("No correspoing value of `task` found in metadata. Make it explicit by `--task`"),
|
||||
Some(task) => match task.as_str() {
|
||||
"classify" => YOLOTask::Classify,
|
||||
"detect" => YOLOTask::Detect,
|
||||
"pose" => YOLOTask::Pose,
|
||||
"segment" => YOLOTask::Segment,
|
||||
x => todo!("{:?} is not supported for now!", x),
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
Ok(Self {
|
||||
session,
|
||||
task,
|
||||
ep,
|
||||
batch,
|
||||
inputs,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn fetch_inputs_from_session(
|
||||
session: &Session,
|
||||
) -> (Vec<Vec<i32>>, Vec<TensorElementDataType>, Vec<String>) {
|
||||
// get inputs attrs from ONNX model
|
||||
let mut shapes = Vec::new();
|
||||
let mut dtypes = Vec::new();
|
||||
let mut names = Vec::new();
|
||||
for i in session.inputs.iter() {
|
||||
let shape: Vec<i32> = i
|
||||
.dimensions()
|
||||
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
|
||||
.collect();
|
||||
shapes.push(shape);
|
||||
dtypes.push(i.input_type);
|
||||
names.push(i.name.clone());
|
||||
}
|
||||
(shapes, dtypes, names)
|
||||
}
|
||||
|
||||
pub fn set_ep_cuda(device_id: u32) -> (OrtEP, ExecutionProvider) {
|
||||
// set CUDA
|
||||
if ExecutionProvider::CUDA(Default::default()).is_available() {
|
||||
(
|
||||
OrtEP::Cuda(device_id),
|
||||
ExecutionProvider::CUDA(CUDAExecutionProviderOptions {
|
||||
device_id,
|
||||
..Default::default()
|
||||
}),
|
||||
)
|
||||
} else {
|
||||
println!("> CUDA is not available! Using CPU.");
|
||||
(OrtEP::Cpu, ExecutionProvider::CPU(Default::default()))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_ep_trt(
|
||||
device_id: u32,
|
||||
fp16: bool,
|
||||
batch: &Batch,
|
||||
inputs: &OrtInputs,
|
||||
) -> (OrtEP, ExecutionProvider) {
|
||||
// set TensorRT
|
||||
if ExecutionProvider::TensorRT(Default::default()).is_available() {
|
||||
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
|
||||
|
||||
// dtype match checking
|
||||
if inputs.dtypes[0] == TensorElementDataType::Float16 && !fp16 {
|
||||
panic!(
|
||||
"Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
|
||||
inputs.dtypes[0]
|
||||
);
|
||||
}
|
||||
|
||||
// dynamic shape: input_tensor_1:dim_1xdim_2x...,input_tensor_2:dim_3xdim_4x...,...
|
||||
let mut opt_string = String::new();
|
||||
let mut min_string = String::new();
|
||||
let mut max_string = String::new();
|
||||
for name in inputs.names.iter() {
|
||||
let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width);
|
||||
let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width);
|
||||
let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width);
|
||||
opt_string.push_str(s_opt.as_str());
|
||||
min_string.push_str(s_min.as_str());
|
||||
max_string.push_str(s_max.as_str());
|
||||
}
|
||||
let _ = opt_string.pop();
|
||||
let _ = min_string.pop();
|
||||
let _ = max_string.pop();
|
||||
(
|
||||
OrtEP::Trt(device_id),
|
||||
ExecutionProvider::TensorRT(TensorRTExecutionProviderOptions {
|
||||
device_id,
|
||||
fp16_enable: fp16,
|
||||
timing_cache_enable: true,
|
||||
profile_min_shapes: min_string,
|
||||
profile_max_shapes: max_string,
|
||||
profile_opt_shapes: opt_string,
|
||||
..Default::default()
|
||||
}),
|
||||
)
|
||||
} else {
|
||||
println!("> TensorRT is not available! Try using CUDA...");
|
||||
Self::set_ep_cuda(device_id)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn fetch_from_metadata(&self, key: &str) -> Option<String> {
|
||||
// fetch value from onnx model file by key
|
||||
match self.session.metadata() {
|
||||
Err(_) => None,
|
||||
Ok(metadata) => match metadata.custom(key) {
|
||||
Err(_) => None,
|
||||
Ok(value) => value,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
|
||||
// ORT inference
|
||||
match self.dtype() {
|
||||
TensorElementDataType::Float16 => self.run_fp16(xs, profile),
|
||||
TensorElementDataType::Float32 => self.run_fp32(xs, profile),
|
||||
_ => todo!(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
|
||||
// f32->f16
|
||||
let t = std::time::Instant::now();
|
||||
let xs = xs.mapv(f16::from_f32);
|
||||
if profile {
|
||||
println!("[ORT f32->f16]: {:?}", t.elapsed());
|
||||
}
|
||||
|
||||
// h2d
|
||||
let t = std::time::Instant::now();
|
||||
let xs = CowArray::from(xs);
|
||||
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
|
||||
if profile {
|
||||
println!("[ORT H2D]: {:?}", t.elapsed());
|
||||
}
|
||||
|
||||
// run
|
||||
let t = std::time::Instant::now();
|
||||
let ys = self.session.run(xs)?;
|
||||
if profile {
|
||||
println!("[ORT Inference]: {:?}", t.elapsed());
|
||||
}
|
||||
|
||||
// d2h
|
||||
Ok(ys
|
||||
.iter()
|
||||
.map(|x| {
|
||||
// d2h
|
||||
let t = std::time::Instant::now();
|
||||
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
|
||||
if profile {
|
||||
println!("[ORT D2H]: {:?}", t.elapsed());
|
||||
}
|
||||
|
||||
// f16->f32
|
||||
let t_ = std::time::Instant::now();
|
||||
let x = x.mapv(f16::to_f32);
|
||||
if profile {
|
||||
println!("[ORT f16->f32]: {:?}", t_.elapsed());
|
||||
}
|
||||
x
|
||||
})
|
||||
.collect::<Vec<Array<_, _>>>())
|
||||
}
|
||||
|
||||
pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
|
||||
// h2d
|
||||
let t = std::time::Instant::now();
|
||||
let xs = CowArray::from(xs);
|
||||
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
|
||||
if profile {
|
||||
println!("[ORT H2D]: {:?}", t.elapsed());
|
||||
}
|
||||
|
||||
// run
|
||||
let t = std::time::Instant::now();
|
||||
let ys = self.session.run(xs)?;
|
||||
if profile {
|
||||
println!("[ORT Inference]: {:?}", t.elapsed());
|
||||
}
|
||||
|
||||
// d2h
|
||||
Ok(ys
|
||||
.iter()
|
||||
.map(|x| {
|
||||
let t = std::time::Instant::now();
|
||||
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
|
||||
if profile {
|
||||
println!("[ORT D2H]: {:?}", t.elapsed());
|
||||
}
|
||||
x
|
||||
})
|
||||
.collect::<Vec<Array<_, _>>>())
|
||||
}
|
||||
|
||||
pub fn output_shapes(&self) -> Vec<Vec<i32>> {
|
||||
let mut shapes = Vec::new();
|
||||
for o in &self.session.outputs {
|
||||
let shape: Vec<_> = o
|
||||
.dimensions()
|
||||
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
|
||||
.collect();
|
||||
shapes.push(shape);
|
||||
}
|
||||
shapes
|
||||
}
|
||||
|
||||
pub fn output_dtypes(&self) -> Vec<TensorElementDataType> {
|
||||
let mut dtypes = Vec::new();
|
||||
self.session
|
||||
.outputs
|
||||
.iter()
|
||||
.for_each(|x| dtypes.push(x.output_type));
|
||||
dtypes
|
||||
}
|
||||
|
||||
pub fn input_shapes(&self) -> &Vec<Vec<i32>> {
|
||||
&self.inputs.shapes
|
||||
}
|
||||
|
||||
pub fn input_names(&self) -> &Vec<String> {
|
||||
&self.inputs.names
|
||||
}
|
||||
|
||||
pub fn input_dtypes(&self) -> &Vec<TensorElementDataType> {
|
||||
&self.inputs.dtypes
|
||||
}
|
||||
|
||||
pub fn dtype(&self) -> TensorElementDataType {
|
||||
self.input_dtypes()[0]
|
||||
}
|
||||
|
||||
pub fn height(&self) -> u32 {
|
||||
self.inputs.sizes[0][0]
|
||||
}
|
||||
|
||||
pub fn width(&self) -> u32 {
|
||||
self.inputs.sizes[0][1]
|
||||
}
|
||||
|
||||
pub fn is_height_dynamic(&self) -> bool {
|
||||
self.input_shapes()[0][2] == -1
|
||||
}
|
||||
|
||||
pub fn is_width_dynamic(&self) -> bool {
|
||||
self.input_shapes()[0][3] == -1
|
||||
}
|
||||
|
||||
pub fn batch(&self) -> u32 {
|
||||
self.batch.opt
|
||||
}
|
||||
|
||||
pub fn is_batch_dynamic(&self) -> bool {
|
||||
self.input_shapes()[0][0] == -1
|
||||
}
|
||||
|
||||
pub fn ep(&self) -> &OrtEP {
|
||||
&self.ep
|
||||
}
|
||||
|
||||
pub fn task(&self) -> YOLOTask {
|
||||
self.task.clone()
|
||||
}
|
||||
|
||||
pub fn names(&self) -> Option<Vec<String>> {
|
||||
// class names, metadata parsing
|
||||
// String format: `{0: 'person', 1: 'bicycle', 2: 'sports ball', ..., 27: "yellow_lady's_slipper"}`
|
||||
match self.fetch_from_metadata("names") {
|
||||
Some(names) => {
|
||||
let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap();
|
||||
let mut names_ = vec![];
|
||||
for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) {
|
||||
names_.push(name.to_string());
|
||||
}
|
||||
Some(names_)
|
||||
}
|
||||
None => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nk(&self) -> Option<u32> {
|
||||
// num_keypoints, metadata parsing: String `nk` in onnx model: `[17, 3]`
|
||||
match self.fetch_from_metadata("kpt_shape") {
|
||||
None => None,
|
||||
Some(kpt_string) => {
|
||||
let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap();
|
||||
let caps = re.captures(&kpt_string).unwrap();
|
||||
Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nc(&self) -> Option<u32> {
|
||||
// num_classes
|
||||
match self.names() {
|
||||
// by names
|
||||
Some(names) => Some(names.len() as u32),
|
||||
None => match self.task() {
|
||||
// by task calculation
|
||||
YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32),
|
||||
YOLOTask::Detect => {
|
||||
if self.output_shapes()[0][1] == -1 {
|
||||
None
|
||||
} else {
|
||||
// cxywhclss
|
||||
Some(self.output_shapes()[0][1] as u32 - 4)
|
||||
}
|
||||
}
|
||||
YOLOTask::Pose => {
|
||||
match self.nk() {
|
||||
None => None,
|
||||
Some(nk) => {
|
||||
if self.output_shapes()[0][1] == -1 {
|
||||
None
|
||||
} else {
|
||||
// cxywhclss3*kpt
|
||||
Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
YOLOTask::Segment => {
|
||||
if self.output_shapes()[0][1] == -1 {
|
||||
None
|
||||
} else {
|
||||
// cxywhclssnm
|
||||
Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4)
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nm(&self) -> Option<u32> {
|
||||
// num_masks
|
||||
match self.task() {
|
||||
YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn na(&self) -> Option<u32> {
|
||||
// num_anchors
|
||||
match self.task() {
|
||||
YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => {
|
||||
if self.output_shapes()[0][2] == -1 {
|
||||
None
|
||||
} else {
|
||||
Some(self.output_shapes()[0][2] as u32)
|
||||
}
|
||||
}
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn author(&self) -> Option<String> {
|
||||
self.fetch_from_metadata("author")
|
||||
}
|
||||
|
||||
pub fn version(&self) -> Option<String> {
|
||||
self.fetch_from_metadata("version")
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue