ultralytics 8.2.14 add task + OBB to hub.check_dataset() (#12573)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
cf24349efb
commit
fd748e3c7a
5 changed files with 36 additions and 24 deletions
|
|
@ -12,7 +12,7 @@ import yaml
|
|||
from PIL import Image
|
||||
|
||||
from ultralytics import RTDETR, YOLO
|
||||
from ultralytics.cfg import MODELS, TASK2DATA
|
||||
from ultralytics.cfg import MODELS, TASKS, TASK2DATA
|
||||
from ultralytics.data.build import load_inference_source
|
||||
from ultralytics.utils import (
|
||||
ASSETS,
|
||||
|
|
@ -98,6 +98,12 @@ def test_predict_img(model_name):
|
|||
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", MODELS)
|
||||
def test_predict_visualize(model):
|
||||
"""Test model predict methods with 'visualize=True' arguments."""
|
||||
YOLO(WEIGHTS_DIR / model)(SOURCE, imgsz=32, visualize=True)
|
||||
|
||||
|
||||
def test_predict_grey_and_4ch():
|
||||
"""Test YOLO prediction on SOURCE converted to greyscale and 4-channel images."""
|
||||
im = Image.open(SOURCE)
|
||||
|
|
@ -267,7 +273,7 @@ def test_data_utils():
|
|||
# from ultralytics.utils.files import WorkingDirectory
|
||||
# with WorkingDirectory(ROOT.parent / 'tests'):
|
||||
|
||||
for task in "detect", "segment", "pose", "classify":
|
||||
for task in TASKS:
|
||||
file = Path(TASK2DATA[task]).with_suffix(".zip") # i.e. coco8.zip
|
||||
download(f"https://github.com/ultralytics/hub/raw/main/example_datasets/{file}", unzip=False, dir=TMP)
|
||||
stats = HUBDatasetStats(TMP / file, task=task)
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
__version__ = "8.2.13"
|
||||
__version__ = "8.2.14"
|
||||
|
||||
from ultralytics.data.explorer.explorer import Explorer
|
||||
from ultralytics.models import RTDETR, SAM, YOLO, YOLOWorld
|
||||
|
|
|
|||
|
|
@ -441,6 +441,7 @@ class HUBDatasetStats:
|
|||
stats = HUBDatasetStats('path/to/coco8.zip', task='detect') # detect dataset
|
||||
stats = HUBDatasetStats('path/to/coco8-seg.zip', task='segment') # segment dataset
|
||||
stats = HUBDatasetStats('path/to/coco8-pose.zip', task='pose') # pose dataset
|
||||
stats = HUBDatasetStats('path/to/dota8.zip', task='obb') # OBB dataset
|
||||
stats = HUBDatasetStats('path/to/imagenet10.zip', task='classify') # classification dataset
|
||||
|
||||
stats.get_json(save=True)
|
||||
|
|
@ -497,13 +498,13 @@ class HUBDatasetStats:
|
|||
"""Update labels to integer class and 4 decimal place floats."""
|
||||
if self.task == "detect":
|
||||
coordinates = labels["bboxes"]
|
||||
elif self.task == "segment":
|
||||
elif self.task in {"segment", "obb"}: # Segment and OBB use segments. OBB segments are normalized xyxyxyxy
|
||||
coordinates = [x.flatten() for x in labels["segments"]]
|
||||
elif self.task == "pose":
|
||||
n, nk, nd = labels["keypoints"].shape
|
||||
coordinates = np.concatenate((labels["bboxes"], labels["keypoints"].reshape(n, nk * nd)), 1)
|
||||
else:
|
||||
raise ValueError("Undefined dataset task.")
|
||||
raise ValueError(f"Undefined dataset task={self.task}.")
|
||||
zipped = zip(labels["cls"], coordinates)
|
||||
return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped]
|
||||
|
||||
|
|
|
|||
|
|
@ -106,22 +106,26 @@ def get_export(model_id="", format="torchscript"):
|
|||
return r.json()
|
||||
|
||||
|
||||
def check_dataset(path="", task="detect"):
|
||||
def check_dataset(path: str, task: str) -> None:
|
||||
"""
|
||||
Function for error-checking HUB dataset Zip file before upload. It checks a dataset for errors before it is uploaded
|
||||
to the HUB. Usage examples are given below.
|
||||
|
||||
Args:
|
||||
path (str, optional): Path to data.zip (with data.yaml inside data.zip). Defaults to ''.
|
||||
task (str, optional): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Defaults to 'detect'.
|
||||
path (str): Path to data.zip (with data.yaml inside data.zip).
|
||||
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify', 'obb'.
|
||||
|
||||
Example:
|
||||
Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets
|
||||
i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip.
|
||||
```python
|
||||
from ultralytics.hub import check_dataset
|
||||
|
||||
check_dataset('path/to/coco8.zip', task='detect') # detect dataset
|
||||
check_dataset('path/to/coco8-seg.zip', task='segment') # segment dataset
|
||||
check_dataset('path/to/coco8-pose.zip', task='pose') # pose dataset
|
||||
check_dataset('path/to/dota8.zip', task='obb') # OBB dataset
|
||||
check_dataset('path/to/imagenet10.zip', task='classify') # classification dataset
|
||||
```
|
||||
"""
|
||||
HUBDatasetStats(path=path, task=task).get_json()
|
||||
|
|
|
|||
|
|
@ -1105,23 +1105,24 @@ def feature_visualization(x, module_type, stage, n=32, save_dir=Path("runs/detec
|
|||
n (int, optional): Maximum number of feature maps to plot. Defaults to 32.
|
||||
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp').
|
||||
"""
|
||||
for m in ["Detect", "Pose", "Segment"]:
|
||||
for m in {"Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"}: # all model heads
|
||||
if m in module_type:
|
||||
return
|
||||
_, channels, height, width = x.shape # batch, channels, height, width
|
||||
if height > 1 and width > 1:
|
||||
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
||||
if isinstance(x, torch.Tensor):
|
||||
_, channels, height, width = x.shape # batch, channels, height, width
|
||||
if height > 1 and width > 1:
|
||||
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename
|
||||
|
||||
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
||||
n = min(n, channels) # number of plots
|
||||
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
||||
ax = ax.ravel()
|
||||
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||||
for i in range(n):
|
||||
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
||||
ax[i].axis("off")
|
||||
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels
|
||||
n = min(n, channels) # number of plots
|
||||
_, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
|
||||
ax = ax.ravel()
|
||||
plt.subplots_adjust(wspace=0.05, hspace=0.05)
|
||||
for i in range(n):
|
||||
ax[i].imshow(blocks[i].squeeze()) # cmap='gray'
|
||||
ax[i].axis("off")
|
||||
|
||||
LOGGER.info(f"Saving {f}... ({n}/{channels})")
|
||||
plt.savefig(f, dpi=300, bbox_inches="tight")
|
||||
plt.close()
|
||||
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
|
||||
LOGGER.info(f"Saving {f}... ({n}/{channels})")
|
||||
plt.savefig(f, dpi=300, bbox_inches="tight")
|
||||
plt.close()
|
||||
np.save(str(f.with_suffix(".npy")), x[0].cpu().numpy()) # npy save
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue