ultralytics 8.1.3 ResNet models and lighter dependencies (#7700)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Vivek Malvi <vivekmalvi@raoinformationtechnology.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: iscyy <wenvoi@163.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Prince kumar <85225054+prince0310@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-20 00:52:50 +01:00 committed by GitHub
parent c13315bbf8
commit fcc4496b12
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
8 changed files with 96 additions and 44 deletions

View file

@ -0,0 +1,25 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 1000 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
s: [0.33, 0.50, 1024]
m: [0.67, 0.75, 1024]
l: [1.00, 1.00, 1024]
x: [1.00, 1.25, 1024]
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3-P4/16
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
# YOLOv8.0n head
head:
- [-1, 1, Classify, [nc]] # Classify

View file

@ -0,0 +1,25 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 1000 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]
s: [0.33, 0.50, 1024]
m: [0.67, 0.75, 1024]
l: [1.00, 1.00, 1024]
x: [1.00, 1.25, 1024]
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0-P1/2
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1-P2/4
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2-P3/8
- [-1, 1, ResNetLayer, [512, 256, 2, False, 6]] # 3-P4/16
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4-P5/32
# YOLOv8.0n head
head:
- [-1, 1, Classify, [nc]] # Classify