Add YOLOv8 OpenVINO C++ Inference example (#13839)
Co-authored-by: Muhammad Amir Abdurrozaq <m.amir.hs19@gmail.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
e30b7c24f2
commit
fb6d8c0123
5 changed files with 365 additions and 0 deletions
21
examples/YOLOv8-OpenVINO-CPP-Inference/CMakeLists.txt
Normal file
21
examples/YOLOv8-OpenVINO-CPP-Inference/CMakeLists.txt
Normal file
|
|
@ -0,0 +1,21 @@
|
|||
cmake_minimum_required(VERSION 3.12)
|
||||
project(yolov8_openvino_example)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 14)
|
||||
|
||||
find_package(OpenCV REQUIRED)
|
||||
|
||||
include_directories(
|
||||
${OpenCV_INCLUDE_DIRS}
|
||||
/path/to/intel/openvino/runtime/include
|
||||
)
|
||||
|
||||
add_executable(detect
|
||||
main.cc
|
||||
inference.cc
|
||||
)
|
||||
|
||||
target_link_libraries(detect
|
||||
${OpenCV_LIBS}
|
||||
/path/to/intel/openvino/runtime/lib/intel64/libopenvino.so
|
||||
)
|
||||
69
examples/YOLOv8-OpenVINO-CPP-Inference/README.md
Normal file
69
examples/YOLOv8-OpenVINO-CPP-Inference/README.md
Normal file
|
|
@ -0,0 +1,69 @@
|
|||
# YOLOv8 OpenVINO Inference in C++ 🦾
|
||||
|
||||
Welcome to the YOLOv8 OpenVINO Inference example in C++! This guide will help you get started with leveraging the powerful YOLOv8 models using OpenVINO and OpenCV API in your C++ projects. Whether you're looking to enhance performance or add flexibility to your applications, this example has got you covered.
|
||||
|
||||
## 🌟 Features
|
||||
|
||||
- 🚀 **Model Format Support**: Compatible with `ONNX` and `OpenVINO IR` formats.
|
||||
- ⚡ **Precision Options**: Run models in `FP32`, `FP16`, and `INT8` precisions.
|
||||
- 🔄 **Dynamic Shape Loading**: Easily handle models with dynamic input shapes.
|
||||
|
||||
## 📋 Dependencies
|
||||
|
||||
To ensure smooth execution, please make sure you have the following dependencies installed:
|
||||
|
||||
| Dependency | Version |
|
||||
| ---------- | -------- |
|
||||
| OpenVINO | >=2023.3 |
|
||||
| OpenCV | >=4.5.0 |
|
||||
| C++ | >=14 |
|
||||
| CMake | >=3.12.0 |
|
||||
|
||||
## ⚙️ Build Instructions
|
||||
|
||||
Follow these steps to build the project:
|
||||
|
||||
1. Clone the repository:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/ultralytics.git
|
||||
cd ultralytics/YOLOv8-OpenVINO-CPP-Inference
|
||||
```
|
||||
|
||||
2. Create a build directory and compile the project:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
make
|
||||
```
|
||||
|
||||
## 🛠️ Usage
|
||||
|
||||
Once built, you can run inference on an image using the following command:
|
||||
|
||||
```bash
|
||||
./detect <model_path.{onnx, xml}> <image_path.jpg>
|
||||
```
|
||||
|
||||
## 🔄 Exporting YOLOv8 Models
|
||||
|
||||
To use your YOLOv8 model with OpenVINO, you need to export it first. Use the command below to export the model:
|
||||
|
||||
```commandline
|
||||
yolo export model=yolov8s.pt imgsz=640 format=openvino
|
||||
```
|
||||
|
||||
## 📸 Screenshots
|
||||
|
||||
### Running Using OpenVINO Model
|
||||
|
||||

|
||||
|
||||
### Running Using ONNX Model
|
||||
|
||||

|
||||
|
||||
## ❤️ Contributions
|
||||
|
||||
We hope this example helps you integrate YOLOv8 with OpenVINO and OpenCV into your C++ projects effortlessly. Happy coding! 🚀
|
||||
175
examples/YOLOv8-OpenVINO-CPP-Inference/inference.cc
Normal file
175
examples/YOLOv8-OpenVINO-CPP-Inference/inference.cc
Normal file
|
|
@ -0,0 +1,175 @@
|
|||
#include "inference.h"
|
||||
|
||||
#include <memory>
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <random>
|
||||
|
||||
namespace yolo {
|
||||
|
||||
// Constructor to initialize the model with default input shape
|
||||
Inference::Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold) {
|
||||
model_input_shape_ = cv::Size(640, 640); // Set the default size for models with dynamic shapes to prevent errors.
|
||||
model_confidence_threshold_ = model_confidence_threshold;
|
||||
model_NMS_threshold_ = model_NMS_threshold;
|
||||
InitializeModel(model_path);
|
||||
}
|
||||
|
||||
// Constructor to initialize the model with specified input shape
|
||||
Inference::Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold) {
|
||||
model_input_shape_ = model_input_shape;
|
||||
model_confidence_threshold_ = model_confidence_threshold;
|
||||
model_NMS_threshold_ = model_NMS_threshold;
|
||||
InitializeModel(model_path);
|
||||
}
|
||||
|
||||
void Inference::InitializeModel(const std::string &model_path) {
|
||||
ov::Core core; // OpenVINO core object
|
||||
std::shared_ptr<ov::Model> model = core.read_model(model_path); // Read the model from file
|
||||
|
||||
// If the model has dynamic shapes, reshape it to the specified input shape
|
||||
if (model->is_dynamic()) {
|
||||
model->reshape({1, 3, static_cast<long int>(model_input_shape_.height), static_cast<long int>(model_input_shape_.width)});
|
||||
}
|
||||
|
||||
// Preprocessing setup for the model
|
||||
ov::preprocess::PrePostProcessor ppp = ov::preprocess::PrePostProcessor(model);
|
||||
ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC").set_color_format(ov::preprocess::ColorFormat::BGR);
|
||||
ppp.input().preprocess().convert_element_type(ov::element::f32).convert_color(ov::preprocess::ColorFormat::RGB).scale({255, 255, 255});
|
||||
ppp.input().model().set_layout("NCHW");
|
||||
ppp.output().tensor().set_element_type(ov::element::f32);
|
||||
model = ppp.build(); // Build the preprocessed model
|
||||
|
||||
// Compile the model for inference
|
||||
compiled_model_ = core.compile_model(model, "AUTO");
|
||||
inference_request_ = compiled_model_.create_infer_request(); // Create inference request
|
||||
|
||||
short width, height;
|
||||
|
||||
// Get input shape from the model
|
||||
const std::vector<ov::Output<ov::Node>> inputs = model->inputs();
|
||||
const ov::Shape input_shape = inputs[0].get_shape();
|
||||
height = input_shape[1];
|
||||
width = input_shape[2];
|
||||
model_input_shape_ = cv::Size2f(width, height);
|
||||
|
||||
// Get output shape from the model
|
||||
const std::vector<ov::Output<ov::Node>> outputs = model->outputs();
|
||||
const ov::Shape output_shape = outputs[0].get_shape();
|
||||
height = output_shape[1];
|
||||
width = output_shape[2];
|
||||
model_output_shape_ = cv::Size(width, height);
|
||||
}
|
||||
|
||||
// Method to run inference on an input frame
|
||||
void Inference::RunInference(cv::Mat &frame) {
|
||||
Preprocessing(frame); // Preprocess the input frame
|
||||
inference_request_.infer(); // Run inference
|
||||
PostProcessing(frame); // Postprocess the inference results
|
||||
}
|
||||
|
||||
// Method to preprocess the input frame
|
||||
void Inference::Preprocessing(const cv::Mat &frame) {
|
||||
cv::Mat resized_frame;
|
||||
cv::resize(frame, resized_frame, model_input_shape_, 0, 0, cv::INTER_AREA); // Resize the frame to match the model input shape
|
||||
|
||||
// Calculate scaling factor
|
||||
scale_factor_.x = static_cast<float>(frame.cols / model_input_shape_.width);
|
||||
scale_factor_.y = static_cast<float>(frame.rows / model_input_shape_.height);
|
||||
|
||||
float *input_data = (float *)resized_frame.data; // Get pointer to resized frame data
|
||||
const ov::Tensor input_tensor = ov::Tensor(compiled_model_.input().get_element_type(), compiled_model_.input().get_shape(), input_data); // Create input tensor
|
||||
inference_request_.set_input_tensor(input_tensor); // Set input tensor for inference
|
||||
}
|
||||
|
||||
// Method to postprocess the inference results
|
||||
void Inference::PostProcessing(cv::Mat &frame) {
|
||||
std::vector<int> class_list;
|
||||
std::vector<float> confidence_list;
|
||||
std::vector<cv::Rect> box_list;
|
||||
|
||||
// Get the output tensor from the inference request
|
||||
const float *detections = inference_request_.get_output_tensor().data<const float>();
|
||||
const cv::Mat detection_outputs(model_output_shape_, CV_32F, (float *)detections); // Create OpenCV matrix from output tensor
|
||||
|
||||
// Iterate over detections and collect class IDs, confidence scores, and bounding boxes
|
||||
for (int i = 0; i < detection_outputs.cols; ++i) {
|
||||
const cv::Mat classes_scores = detection_outputs.col(i).rowRange(4, detection_outputs.rows);
|
||||
|
||||
cv::Point class_id;
|
||||
double score;
|
||||
cv::minMaxLoc(classes_scores, nullptr, &score, nullptr, &class_id); // Find the class with the highest score
|
||||
|
||||
// Check if the detection meets the confidence threshold
|
||||
if (score > model_confidence_threshold_) {
|
||||
class_list.push_back(class_id.y);
|
||||
confidence_list.push_back(score);
|
||||
|
||||
const float x = detection_outputs.at<float>(0, i);
|
||||
const float y = detection_outputs.at<float>(1, i);
|
||||
const float w = detection_outputs.at<float>(2, i);
|
||||
const float h = detection_outputs.at<float>(3, i);
|
||||
|
||||
cv::Rect box;
|
||||
box.x = static_cast<int>(x);
|
||||
box.y = static_cast<int>(y);
|
||||
box.width = static_cast<int>(w);
|
||||
box.height = static_cast<int>(h);
|
||||
box_list.push_back(box);
|
||||
}
|
||||
}
|
||||
|
||||
// Apply Non-Maximum Suppression (NMS) to filter overlapping bounding boxes
|
||||
std::vector<int> NMS_result;
|
||||
cv::dnn::NMSBoxes(box_list, confidence_list, model_confidence_threshold_, model_NMS_threshold_, NMS_result);
|
||||
|
||||
// Collect final detections after NMS
|
||||
for (int i = 0; i < NMS_result.size(); ++i) {
|
||||
Detection result;
|
||||
const unsigned short id = NMS_result[i];
|
||||
|
||||
result.class_id = class_list[id];
|
||||
result.confidence = confidence_list[id];
|
||||
result.box = GetBoundingBox(box_list[id]);
|
||||
|
||||
DrawDetectedObject(frame, result);
|
||||
}
|
||||
}
|
||||
|
||||
// Method to get the bounding box in the correct scale
|
||||
cv::Rect Inference::GetBoundingBox(const cv::Rect &src) const {
|
||||
cv::Rect box = src;
|
||||
box.x = (box.x - box.width / 2) * scale_factor_.x;
|
||||
box.y = (box.y - box.height / 2) * scale_factor_.y;
|
||||
box.width *= scale_factor_.x;
|
||||
box.height *= scale_factor_.y;
|
||||
return box;
|
||||
}
|
||||
|
||||
void Inference::DrawDetectedObject(cv::Mat &frame, const Detection &detection) const {
|
||||
const cv::Rect &box = detection.box;
|
||||
const float &confidence = detection.confidence;
|
||||
const int &class_id = detection.class_id;
|
||||
|
||||
// Generate a random color for the bounding box
|
||||
std::random_device rd;
|
||||
std::mt19937 gen(rd());
|
||||
std::uniform_int_distribution<int> dis(120, 255);
|
||||
const cv::Scalar &color = cv::Scalar(dis(gen), dis(gen), dis(gen));
|
||||
|
||||
// Draw the bounding box around the detected object
|
||||
cv::rectangle(frame, cv::Point(box.x, box.y), cv::Point(box.x + box.width, box.y + box.height), color, 3);
|
||||
|
||||
// Prepare the class label and confidence text
|
||||
std::string classString = classes_[class_id] + std::to_string(confidence).substr(0, 4);
|
||||
|
||||
// Get the size of the text box
|
||||
cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 0.75, 2, 0);
|
||||
cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
|
||||
|
||||
// Draw the text box
|
||||
cv::rectangle(frame, textBox, color, cv::FILLED);
|
||||
|
||||
// Put the class label and confidence text above the bounding box
|
||||
cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 0.75, cv::Scalar(0, 0, 0), 2, 0);
|
||||
}
|
||||
} // namespace yolo
|
||||
59
examples/YOLOv8-OpenVINO-CPP-Inference/inference.h
Normal file
59
examples/YOLOv8-OpenVINO-CPP-Inference/inference.h
Normal file
|
|
@ -0,0 +1,59 @@
|
|||
#ifndef YOLO_INFERENCE_H_
|
||||
#define YOLO_INFERENCE_H_
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <openvino/openvino.hpp>
|
||||
|
||||
namespace yolo {
|
||||
|
||||
struct Detection {
|
||||
short class_id;
|
||||
float confidence;
|
||||
cv::Rect box;
|
||||
};
|
||||
|
||||
class Inference {
|
||||
public:
|
||||
Inference() {}
|
||||
// Constructor to initialize the model with default input shape
|
||||
Inference(const std::string &model_path, const float &model_confidence_threshold, const float &model_NMS_threshold);
|
||||
// Constructor to initialize the model with specified input shape
|
||||
Inference(const std::string &model_path, const cv::Size model_input_shape, const float &model_confidence_threshold, const float &model_NMS_threshold);
|
||||
|
||||
void RunInference(cv::Mat &frame);
|
||||
|
||||
private:
|
||||
void InitializeModel(const std::string &model_path);
|
||||
void Preprocessing(const cv::Mat &frame);
|
||||
void PostProcessing(cv::Mat &frame);
|
||||
cv::Rect GetBoundingBox(const cv::Rect &src) const;
|
||||
void DrawDetectedObject(cv::Mat &frame, const Detection &detections) const;
|
||||
|
||||
cv::Point2f scale_factor_; // Scaling factor for the input frame
|
||||
cv::Size2f model_input_shape_; // Input shape of the model
|
||||
cv::Size model_output_shape_; // Output shape of the model
|
||||
|
||||
ov::InferRequest inference_request_; // OpenVINO inference request
|
||||
ov::CompiledModel compiled_model_; // OpenVINO compiled model
|
||||
|
||||
float model_confidence_threshold_; // Confidence threshold for detections
|
||||
float model_NMS_threshold_; // Non-Maximum Suppression threshold
|
||||
|
||||
std::vector<std::string> classes_ {
|
||||
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
|
||||
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
|
||||
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
|
||||
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
|
||||
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
|
||||
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
|
||||
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard",
|
||||
"cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase",
|
||||
"scissors", "teddy bear", "hair drier", "toothbrush"
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace yolo
|
||||
|
||||
#endif // YOLO_INFERENCE_H_
|
||||
41
examples/YOLOv8-OpenVINO-CPP-Inference/main.cc
Normal file
41
examples/YOLOv8-OpenVINO-CPP-Inference/main.cc
Normal file
|
|
@ -0,0 +1,41 @@
|
|||
#include "inference.h"
|
||||
|
||||
#include <iostream>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
// Check if the correct number of arguments is provided
|
||||
if (argc != 3) {
|
||||
std::cerr << "usage: " << argv[0] << " <model_path> <image_path>" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Get the model and image paths from the command-line arguments
|
||||
const std::string model_path = argv[1];
|
||||
const std::string image_path = argv[2];
|
||||
|
||||
// Read the input image
|
||||
cv::Mat image = cv::imread(image_path);
|
||||
|
||||
// Check if the image was successfully loaded
|
||||
if (image.empty()) {
|
||||
std::cerr << "ERROR: image is empty" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Define the confidence and NMS thresholds
|
||||
const float confidence_threshold = 0.5;
|
||||
const float NMS_threshold = 0.5;
|
||||
|
||||
// Initialize the YOLO inference with the specified model and parameters
|
||||
yolo::Inference inference(model_path, cv::Size(640, 640), confidence_threshold, NMS_threshold);
|
||||
|
||||
// Run inference on the input image
|
||||
inference.RunInference(image);
|
||||
|
||||
// Display the image with the detections
|
||||
cv::imshow("image", image);
|
||||
cv::waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue