Fix jp to jetpack (#13499)
This commit is contained in:
parent
fe68cd8bd1
commit
f92bd9dea1
1 changed files with 2 additions and 2 deletions
|
|
@ -68,7 +68,7 @@ The fastest way to get started with Ultralytics YOLOv8 on NVIDIA Jetson is to ru
|
|||
Execute the below command to pull the Docker container and run on Jetson. This is based on [l4t-pytorch](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-pytorch) docker image which contains PyTorch and Torchvision in a Python3 environment.
|
||||
|
||||
```bash
|
||||
t=ultralytics/ultralytics:latest-jetson-jp5 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
|
||||
t=ultralytics/ultralytics:latest-jetson-jetpack5 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
|
||||
```
|
||||
|
||||
After this is done, skip to [Use TensorRT on NVIDIA Jetson section](#use-tensorrt-on-nvidia-jetson).
|
||||
|
|
@ -153,7 +153,7 @@ Here we support to run Ultralytics on legacy hardware such as the Jetson Nano. C
|
|||
Execute the below command to pull the Docker container and run on Jetson. This is based on [l4t-cuda](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-cuda) docker image which contains CUDA in a L4T environment.
|
||||
|
||||
```bash
|
||||
t=ultralytics/ultralytics:jetson-jp4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
|
||||
t=ultralytics/ultralytics:latest-jetson-jetpack4 && sudo docker pull $t && sudo docker run -it --ipc=host --runtime=nvidia $t
|
||||
```
|
||||
|
||||
## Use TensorRT on NVIDIA Jetson
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue