PyCharm Docs Inspect fixes (#18432)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Muhammad Rizwan Munawar 2024-12-29 23:19:05 +05:00 committed by GitHub
parent ef16c56c99
commit f7b9009c91
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
15 changed files with 52 additions and 50 deletions

View file

@ -32,7 +32,7 @@ Dataset annotation is a very resource intensive and time-consuming process. If y
```{ .py .annotate }
from ultralytics.data.annotator import auto_annotate
auto_annotate( # (1)!
auto_annotate(
data="path/to/new/data",
det_model="yolo11n.pt",
sam_model="mobile_sam.pt",
@ -41,17 +41,16 @@ auto_annotate( # (1)!
)
```
1. Nothing returns from this function
This function does not return any value. For further details on how the function operates:
- [See the reference section for `annotator.auto_annotate`](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate) for more insight on how the function operates.
- Use in combination with the [function `segments2boxes`](#convert-segments-to-bounding-boxes) to generate object detection bounding boxes as well
### Convert Segmentation Masks into YOLO Format
![Segmentation Masks to YOLO Format](https://github.com/ultralytics/docs/releases/download/0/segmentation-masks-to-yolo-format.avif)
Use to convert a dataset of segmentation mask images to the `YOLO` segmentation format.
Use to convert a dataset of segmentation mask images to the [`YOLO`](../models/yolo11.md) segmentation format.
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format.
The converted masks will be saved in the specified output directory.
@ -59,7 +58,8 @@ The converted masks will be saved in the specified output directory.
```python
from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
# The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
# The classes here is the total classes in the dataset.
# for COCO dataset we have 80 classes.
convert_segment_masks_to_yolo_seg(masks_dir="path/to/masks_dir", output_dir="path/to/output_dir", classes=80)
```