ultralytics 8.0.41 TF SavedModel and EdgeTPU export (#1034)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
Glenn Jocher 2023-02-20 01:27:28 +01:00 committed by GitHub
parent 4b866c9718
commit f6e393c1d2
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
64 changed files with 604 additions and 351 deletions

View file

@ -1,30 +1,32 @@
# Ultralytics YOLO 🚀, GPL-3.0 license
"""
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ yolo task=... mode=predict model=s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
$ yolo mode=predict model=yolov8n.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ yolo task=... mode=predict --weights yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
$ yolo mode=predict model=yolov8n.pt # PyTorch
yolov8n.torchscript # TorchScript
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True
yolov8n_openvino_model # OpenVINO
yolov8n.engine # TensorRT
yolov8n.mlmodel # CoreML (macOS-only)
yolov8n_saved_model # TensorFlow SavedModel
yolov8n.pb # TensorFlow GraphDef
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
"""
import platform
from collections import defaultdict
from pathlib import Path
@ -200,9 +202,9 @@ class BasePredictor:
# Print results
if self.args.verbose and self.seen:
t = tuple(x.t / self.seen * 1E3 for x in self.dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms postprocess per image at shape '
LOGGER.info(f'Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape '
f'{(1, 3, *self.imgsz)}' % t)
if self.args.save_txt or self.args.save:
if self.args.save or self.args.save_txt or self.args.save_crop:
nl = len(list(self.save_dir.glob('labels/*.txt'))) # number of labels
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")