ultralytics 8.0.41 TF SavedModel and EdgeTPU export (#1034)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
parent
4b866c9718
commit
f6e393c1d2
64 changed files with 604 additions and 351 deletions
|
|
@ -28,13 +28,18 @@ def check_class_names(names):
|
|||
if not all(isinstance(k, int) for k in names.keys()): # convert string keys to int, i.e. '0' to 0
|
||||
names = {int(k): v for k, v in names.items()}
|
||||
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764'
|
||||
map = yaml_load(ROOT / 'yolo/data/datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
map = yaml_load(ROOT / 'datasets/ImageNet.yaml')['map'] # human-readable names
|
||||
names = {k: map[v] for k, v in names.items()}
|
||||
return names
|
||||
|
||||
|
||||
class AutoBackend(nn.Module):
|
||||
|
||||
def _apply_default_class_names(self, data):
|
||||
with contextlib.suppress(Exception):
|
||||
return yaml_load(check_yaml(data))['names']
|
||||
return {i: f'class{i}' for i in range(999)} # return default if above errors
|
||||
|
||||
def __init__(self, weights='yolov8n.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
||||
"""
|
||||
MultiBackend class for python inference on various platforms using Ultralytics YOLO.
|
||||
|
|
@ -53,7 +58,7 @@ class AutoBackend(nn.Module):
|
|||
| PyTorch | *.pt |
|
||||
| TorchScript | *.torchscript |
|
||||
| ONNX Runtime | *.onnx |
|
||||
| ONNX OpenCV DNN | *.onnx --dnn |
|
||||
| ONNX OpenCV DNN | *.onnx dnn=True |
|
||||
| OpenVINO | *.xml |
|
||||
| CoreML | *.mlmodel |
|
||||
| TensorRT | *.engine |
|
||||
|
|
@ -142,13 +147,9 @@ class AutoBackend(nn.Module):
|
|||
logger = trt.Logger(trt.Logger.INFO)
|
||||
# Read file
|
||||
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
||||
# Read metadata length
|
||||
meta_len = int.from_bytes(f.read(4), byteorder='little')
|
||||
# Read metadata
|
||||
meta = json.loads(f.read(meta_len).decode('utf-8'))
|
||||
stride, names = int(meta['stride']), meta['names']
|
||||
# Read engine
|
||||
model = runtime.deserialize_cuda_engine(f.read())
|
||||
meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length
|
||||
meta = json.loads(f.read(meta_len).decode('utf-8')) # read metadata
|
||||
model = runtime.deserialize_cuda_engine(f.read()) # read engine
|
||||
context = model.create_execution_context()
|
||||
bindings = OrderedDict()
|
||||
output_names = []
|
||||
|
|
@ -170,6 +171,7 @@ class AutoBackend(nn.Module):
|
|||
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
||||
stride, names = int(meta['stride']), meta['names']
|
||||
elif coreml: # CoreML
|
||||
LOGGER.info(f'Loading {w} for CoreML inference...')
|
||||
import coremltools as ct
|
||||
|
|
@ -179,6 +181,7 @@ class AutoBackend(nn.Module):
|
|||
import tensorflow as tf
|
||||
keras = False # assume TF1 saved_model
|
||||
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||||
w = Path(w) / 'metadata.yaml'
|
||||
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
||||
import tensorflow as tf
|
||||
|
|
@ -265,7 +268,7 @@ class AutoBackend(nn.Module):
|
|||
|
||||
# Check names
|
||||
if 'names' not in locals(): # names missing
|
||||
names = yaml_load(check_yaml(data))['names'] if data else {i: f'class{i}' for i in range(999)} # assign
|
||||
names = self._apply_default_class_names(data)
|
||||
names = check_class_names(names)
|
||||
|
||||
self.__dict__.update(locals()) # assign all variables to self
|
||||
|
|
@ -324,7 +327,9 @@ class AutoBackend(nn.Module):
|
|||
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
||||
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||
else:
|
||||
elif len(y) == 1: # classification model
|
||||
y = list(y.values())
|
||||
elif len(y) == 2: # segmentation model
|
||||
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||||
elif self.paddle: # PaddlePaddle
|
||||
im = im.cpu().numpy().astype(np.float32)
|
||||
|
|
@ -337,8 +342,14 @@ class AutoBackend(nn.Module):
|
|||
im = im.cpu().numpy()
|
||||
if self.saved_model: # SavedModel
|
||||
y = self.model(im, training=False) if self.keras else self.model(im)
|
||||
if not isinstance(y, list):
|
||||
y = [y]
|
||||
elif self.pb: # GraphDef
|
||||
y = self.frozen_func(x=self.tf.constant(im))
|
||||
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
|
||||
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
|
||||
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
|
||||
self.names = {i: f'class{i}' for i in range(nc)}
|
||||
else: # Lite or Edge TPU
|
||||
input = self.input_details[0]
|
||||
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
||||
|
|
@ -354,12 +365,16 @@ class AutoBackend(nn.Module):
|
|||
scale, zero_point = output['quantization']
|
||||
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||||
y.append(x)
|
||||
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
|
||||
if len(self.output_details) == 2: # segment
|
||||
y = [y[1], np.transpose(y[0], (0, 3, 1, 2))]
|
||||
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
|
||||
if len(y) == 2: # segment with (det, proto) output order reversed
|
||||
if len(y[1].shape) != 4:
|
||||
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
|
||||
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
|
||||
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||||
# y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
||||
|
||||
# for x in y:
|
||||
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
|
||||
if isinstance(y, (list, tuple)):
|
||||
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||||
else:
|
||||
|
|
@ -375,7 +390,7 @@ class AutoBackend(nn.Module):
|
|||
Returns:
|
||||
(torch.Tensor): The converted tensor
|
||||
"""
|
||||
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
|
||||
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||
"""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue