From f065931e8e904b5609b96d27823ba4dd5b2bc579 Mon Sep 17 00:00:00 2001 From: Muhammad Rizwan Munawar Date: Wed, 22 May 2024 15:20:16 +0500 Subject: [PATCH] Add https://youtu.be/ZF7EAodHn1U to Docs (#13014) Co-authored-by: Glenn Jocher --- docs/en/models/yolo-world.md | 4 ++-- docs/en/models/yolov9.md | 11 +++++++++++ 2 files changed, 13 insertions(+), 2 deletions(-) diff --git a/docs/en/models/yolo-world.md b/docs/en/models/yolo-world.md index 3052de5e..33517b47 100644 --- a/docs/en/models/yolo-world.md +++ b/docs/en/models/yolo-world.md @@ -8,8 +8,6 @@ keywords: YOLO-World, YOLOv8, machine learning, CNN-based framework, object dete The YOLO-World Model introduces an advanced, real-time [Ultralytics](https://ultralytics.com) [YOLOv8](yolov8.md)-based approach for Open-Vocabulary Detection tasks. This innovation enables the detection of any object within an image based on descriptive texts. By significantly lowering computational demands while preserving competitive performance, YOLO-World emerges as a versatile tool for numerous vision-based applications. -![YOLO-World Model architecture overview](https://github.com/ultralytics/ultralytics/assets/26833433/31105058-78c1-43ef-9573-4f41b06df531) -


+
+ Watch: YOLOv9 Training on Custom Data using Ultralytics | Industrial Package Dataset +

+ ![YOLOv9 performance comparison](https://github.com/ultralytics/ultralytics/assets/26833433/9f41ef7b-6008-43eb-8ba1-0a9b89600100) ## Introduction to YOLOv9