Add HUB-SDK Docs reference section (#7781)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
parent
5941128835
commit
ee88882874
25 changed files with 142 additions and 47 deletions
|
|
@ -116,8 +116,11 @@ class TQDM(tqdm_original):
|
|||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
"""Initialize custom Ultralytics tqdm class with different default arguments."""
|
||||
# Set new default values (these can still be overridden when calling TQDM)
|
||||
"""
|
||||
Initialize custom Ultralytics tqdm class with different default arguments.
|
||||
|
||||
Note these can still be overridden when calling TQDM.
|
||||
"""
|
||||
kwargs["disable"] = not VERBOSE or kwargs.get("disable", False) # logical 'and' with default value if passed
|
||||
kwargs.setdefault("bar_format", TQDM_BAR_FORMAT) # override default value if passed
|
||||
super().__init__(*args, **kwargs)
|
||||
|
|
@ -377,7 +380,7 @@ def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
|
|||
yaml_file: The file path of the YAML file or a YAML-formatted dictionary.
|
||||
|
||||
Returns:
|
||||
None
|
||||
(None)
|
||||
"""
|
||||
yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
|
||||
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
|
||||
|
|
@ -610,7 +613,7 @@ def get_ubuntu_version():
|
|||
|
||||
def get_user_config_dir(sub_dir="Ultralytics"):
|
||||
"""
|
||||
Get the user config directory.
|
||||
Return the appropriate config directory based on the environment operating system.
|
||||
|
||||
Args:
|
||||
sub_dir (str): The name of the subdirectory to create.
|
||||
|
|
@ -618,7 +621,6 @@ def get_user_config_dir(sub_dir="Ultralytics"):
|
|||
Returns:
|
||||
(Path): The path to the user config directory.
|
||||
"""
|
||||
# Return the appropriate config directory for each operating system
|
||||
if WINDOWS:
|
||||
path = Path.home() / "AppData" / "Roaming" / sub_dir
|
||||
elif MACOS: # macOS
|
||||
|
|
|
|||
|
|
@ -258,8 +258,7 @@ class ProfileModels:
|
|||
"""Retrieves the information including number of layers, parameters, gradients and FLOPs for an ONNX model
|
||||
file.
|
||||
"""
|
||||
# return (num_layers, num_params, num_gradients, num_flops)
|
||||
return 0.0, 0.0, 0.0, 0.0
|
||||
return 0.0, 0.0, 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops)
|
||||
|
||||
def iterative_sigma_clipping(self, data, sigma=2, max_iters=3):
|
||||
"""Applies an iterative sigma clipping algorithm to the given data times number of iterations."""
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ def is_ascii(s) -> bool:
|
|||
s (str): String to be checked.
|
||||
|
||||
Returns:
|
||||
bool: True if the string is composed only of ASCII characters, False otherwise.
|
||||
(bool): True if the string is composed only of ASCII characters, False otherwise.
|
||||
"""
|
||||
# Convert list, tuple, None, etc. to string
|
||||
s = str(s)
|
||||
|
|
@ -327,7 +327,7 @@ def check_python(minimum: str = "3.8.0") -> bool:
|
|||
minimum (str): Required minimum version of python.
|
||||
|
||||
Returns:
|
||||
None
|
||||
(bool): Whether the installed Python version meets the minimum constraints.
|
||||
"""
|
||||
return check_version(platform.python_version(), minimum, name="Python ", hard=True)
|
||||
|
||||
|
|
|
|||
|
|
@ -87,8 +87,12 @@ class BboxLoss(nn.Module):
|
|||
|
||||
@staticmethod
|
||||
def _df_loss(pred_dist, target):
|
||||
"""Return sum of left and right DFL losses."""
|
||||
# Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||||
"""
|
||||
Return sum of left and right DFL losses.
|
||||
|
||||
Distribution Focal Loss (DFL) proposed in Generalized Focal Loss
|
||||
https://ieeexplore.ieee.org/document/9792391
|
||||
"""
|
||||
tl = target.long() # target left
|
||||
tr = tl + 1 # target right
|
||||
wl = tr - target # weight left
|
||||
|
|
@ -696,6 +700,7 @@ class v8OBBLoss(v8DetectionLoss):
|
|||
anchor_points (torch.Tensor): Anchor points, (h*w, 2).
|
||||
pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4).
|
||||
pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1).
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Predicted rotated bounding boxes with angles, (bs, h*w, 5).
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -180,7 +180,7 @@ def _get_covariance_matrix(boxes):
|
|||
Returns:
|
||||
(torch.Tensor): Covariance metrixs corresponding to original rotated bounding boxes.
|
||||
"""
|
||||
# Gaussian bounding boxes, ignored the center points(the first two columns) cause it's not needed here.
|
||||
# Gaussian bounding boxes, ignore the center points (the first two columns) because they are not needed here.
|
||||
gbbs = torch.cat((torch.pow(boxes[:, 2:4], 2) / 12, boxes[:, 4:]), dim=-1)
|
||||
a, b, c = gbbs.split(1, dim=-1)
|
||||
return (
|
||||
|
|
|
|||
|
|
@ -75,7 +75,6 @@ def segment2box(segment, width=640, height=640):
|
|||
Returns:
|
||||
(np.ndarray): the minimum and maximum x and y values of the segment.
|
||||
"""
|
||||
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||
x, y = segment.T # segment xy
|
||||
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
||||
x = x[inside]
|
||||
|
|
|
|||
|
|
@ -388,6 +388,7 @@ class Annotator:
|
|||
a (float) : The value of pose point a
|
||||
b (float): The value of pose point b
|
||||
c (float): The value o pose point c
|
||||
|
||||
Returns:
|
||||
angle (degree): Degree value of angle between three points
|
||||
"""
|
||||
|
|
|
|||
|
|
@ -75,7 +75,7 @@ class TritonRemoteModel:
|
|||
*inputs (List[np.ndarray]): Input data to the model.
|
||||
|
||||
Returns:
|
||||
List[np.ndarray]: Model outputs.
|
||||
(List[np.ndarray]): Model outputs.
|
||||
"""
|
||||
infer_inputs = []
|
||||
input_format = inputs[0].dtype
|
||||
|
|
|
|||
|
|
@ -94,7 +94,7 @@ def run_ray_tune(
|
|||
config (dict): A dictionary of hyperparameters to use for training.
|
||||
|
||||
Returns:
|
||||
None.
|
||||
None
|
||||
"""
|
||||
model_to_train = ray.get(model_in_store) # get the model from ray store for tuning
|
||||
model_to_train.reset_callbacks()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue