Update .pre-commit-config.yaml (#1026)
This commit is contained in:
parent
9047d737f4
commit
edd3ff1669
76 changed files with 928 additions and 935 deletions
|
|
@ -24,7 +24,7 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
def preprocess(self, batch):
|
||||
batch = super().preprocess(batch)
|
||||
batch["masks"] = batch["masks"].to(self.device).float()
|
||||
batch['masks'] = batch['masks'].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
|
|
@ -37,8 +37,8 @@ class SegmentationValidator(DetectionValidator):
|
|||
self.process = ops.process_mask # faster
|
||||
|
||||
def get_desc(self):
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', "R", "mAP50", "mAP50-95)", "Mask(P",
|
||||
"R", "mAP50", "mAP50-95)")
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
|
||||
'R', 'mAP50', 'mAP50-95)')
|
||||
|
||||
def postprocess(self, preds):
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
|
|
@ -55,11 +55,11 @@ class SegmentationValidator(DetectionValidator):
|
|||
def update_metrics(self, preds, batch):
|
||||
# Metrics
|
||||
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
||||
idx = batch["batch_idx"] == si
|
||||
cls = batch["cls"][idx]
|
||||
bbox = batch["bboxes"][idx]
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch["ori_shape"][si]
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
|
@ -74,23 +74,23 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
# Masks
|
||||
midx = [si] if self.args.overlap_mask else idx
|
||||
gt_masks = batch["masks"][midx]
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch["img"][si].shape[1:])
|
||||
gt_masks = batch['masks'][midx]
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:])
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch["img"][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch["ratio_pad"][si]) # native-space pred
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
height, width = batch["img"].shape[2:]
|
||||
height, width = batch['img'].shape[2:]
|
||||
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||
(width, height, width, height), device=self.device) # target boxes
|
||||
ops.scale_boxes(batch["img"][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch["ratio_pad"][si]) # native-space labels
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
|
|
@ -112,11 +112,11 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
pred_masks = ops.scale_image(batch["img"][si].shape[1:],
|
||||
pred_masks = ops.scale_image(batch['img'][si].shape[1:],
|
||||
pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||
shape,
|
||||
ratio_pad=batch["ratio_pad"][si])
|
||||
self.pred_to_json(predn, batch["im_file"][si], pred_masks)
|
||||
ratio_pad=batch['ratio_pad'][si])
|
||||
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
|
|
@ -136,7 +136,7 @@ class SegmentationValidator(DetectionValidator):
|
|||
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0]
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
|
||||
gt_masks = gt_masks.gt_(0.5)
|
||||
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||
else: # boxes
|
||||
|
|
@ -158,20 +158,20 @@ class SegmentationValidator(DetectionValidator):
|
|||
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
plot_images(batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
batch["masks"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
batch['masks'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
plot_images(batch["img"],
|
||||
plot_images(batch['img'],
|
||||
*output_to_target(preds[0], max_det=15),
|
||||
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
||||
paths=batch["im_file"],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
self.plot_masks.clear()
|
||||
|
|
@ -182,8 +182,8 @@ class SegmentationValidator(DetectionValidator):
|
|||
from pycocotools.mask import encode # noqa
|
||||
|
||||
def single_encode(x):
|
||||
rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0]
|
||||
rle["counts"] = rle["counts"].decode("utf-8")
|
||||
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
|
||||
rle['counts'] = rle['counts'].decode('utf-8')
|
||||
return rle
|
||||
|
||||
stem = Path(filename).stem
|
||||
|
|
@ -203,8 +203,8 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
def eval_json(self, stats):
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / "annotations/instances_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
self.logger.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
|
|
@ -212,7 +212,7 @@ class SegmentationValidator(DetectionValidator):
|
|||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
|
||||
|
|
@ -231,8 +231,8 @@ class SegmentationValidator(DetectionValidator):
|
|||
|
||||
|
||||
def val(cfg=DEFAULT_CFG, use_python=False):
|
||||
model = cfg.model or "yolov8n-seg.pt"
|
||||
data = cfg.data or "coco128-seg.yaml"
|
||||
model = cfg.model or 'yolov8n-seg.pt'
|
||||
data = cfg.data or 'coco128-seg.yaml'
|
||||
|
||||
args = dict(model=model, data=data)
|
||||
if use_python:
|
||||
|
|
@ -243,5 +243,5 @@ def val(cfg=DEFAULT_CFG, use_python=False):
|
|||
validator(model=args['model'])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
val()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue