Update .pre-commit-config.yaml (#1026)

This commit is contained in:
Glenn Jocher 2023-02-17 22:26:40 +01:00 committed by GitHub
parent 9047d737f4
commit edd3ff1669
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
76 changed files with 928 additions and 935 deletions

View file

@ -72,7 +72,7 @@ class BasePredictor:
"""
self.args = get_cfg(cfg, overrides)
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = self.args.name or f"{self.args.mode}"
name = self.args.name or f'{self.args.mode}'
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
if self.args.conf is None:
self.args.conf = 0.25 # default conf=0.25
@ -97,10 +97,10 @@ class BasePredictor:
pass
def get_annotator(self, img):
raise NotImplementedError("get_annotator function needs to be implemented")
raise NotImplementedError('get_annotator function needs to be implemented')
def write_results(self, results, batch, print_string):
raise NotImplementedError("print_results function needs to be implemented")
raise NotImplementedError('print_results function needs to be implemented')
def postprocess(self, preds, img, orig_img):
return preds
@ -135,7 +135,7 @@ class BasePredictor:
def stream_inference(self, source=None, model=None):
if self.args.verbose:
LOGGER.info("")
LOGGER.info('')
# setup model
if not self.model:
@ -152,9 +152,9 @@ class BasePredictor:
self.done_warmup = True
self.seen, self.windows, self.dt, self.batch = 0, [], (ops.Profile(), ops.Profile(), ops.Profile()), None
self.run_callbacks("on_predict_start")
self.run_callbacks('on_predict_start')
for batch in self.dataset:
self.run_callbacks("on_predict_batch_start")
self.run_callbacks('on_predict_batch_start')
self.batch = batch
path, im, im0s, vid_cap, s = batch
visualize = increment_path(self.save_dir / Path(path).stem, mkdir=True) if self.args.visualize else False
@ -170,7 +170,7 @@ class BasePredictor:
# postprocess
with self.dt[2]:
self.results = self.postprocess(preds, im, im0s)
self.run_callbacks("on_predict_postprocess_end")
self.run_callbacks('on_predict_postprocess_end')
# visualize, save, write results
for i in range(len(im)):
@ -186,7 +186,7 @@ class BasePredictor:
if self.args.save:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
self.run_callbacks("on_predict_batch_end")
self.run_callbacks('on_predict_batch_end')
yield from self.results
# Print time (inference-only)
@ -207,7 +207,7 @@ class BasePredictor:
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
self.run_callbacks("on_predict_end")
self.run_callbacks('on_predict_end')
def setup_model(self, model):
device = select_device(self.args.device)