Update .pre-commit-config.yaml (#1026)
This commit is contained in:
parent
9047d737f4
commit
edd3ff1669
76 changed files with 928 additions and 935 deletions
|
|
@ -11,7 +11,7 @@ from ultralytics.hub.utils import HUB_API_ROOT, check_dataset_disk_space, smart_
|
|||
from ultralytics.yolo.utils import LOGGER, PREFIX, __version__, emojis, is_colab, threaded
|
||||
from ultralytics.yolo.utils.torch_utils import get_flops, get_num_params
|
||||
|
||||
AGENT_NAME = f"python-{__version__}-colab" if is_colab() else f"python-{__version__}-local"
|
||||
AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'
|
||||
session = None
|
||||
|
||||
|
||||
|
|
@ -20,9 +20,9 @@ class HubTrainingSession:
|
|||
def __init__(self, model_id, auth):
|
||||
self.agent_id = None # identifies which instance is communicating with server
|
||||
self.model_id = model_id
|
||||
self.api_url = f"{HUB_API_ROOT}/v1/models/{model_id}"
|
||||
self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
|
||||
self.auth_header = auth.get_auth_header()
|
||||
self._rate_limits = {"metrics": 3.0, "ckpt": 900.0, "heartbeat": 300.0} # rate limits (seconds)
|
||||
self._rate_limits = {'metrics': 3.0, 'ckpt': 900.0, 'heartbeat': 300.0} # rate limits (seconds)
|
||||
self._timers = {} # rate limit timers (seconds)
|
||||
self._metrics_queue = {} # metrics queue
|
||||
self.model = self._get_model()
|
||||
|
|
@ -40,7 +40,7 @@ class HubTrainingSession:
|
|||
passed by signal.
|
||||
"""
|
||||
if self.alive is True:
|
||||
LOGGER.info(f"{PREFIX}Kill signal received! ❌")
|
||||
LOGGER.info(f'{PREFIX}Kill signal received! ❌')
|
||||
self._stop_heartbeat()
|
||||
sys.exit(signum)
|
||||
|
||||
|
|
@ -49,23 +49,23 @@ class HubTrainingSession:
|
|||
self.alive = False
|
||||
|
||||
def upload_metrics(self):
|
||||
payload = {"metrics": self._metrics_queue.copy(), "type": "metrics"}
|
||||
smart_request(f"{self.api_url}", json=payload, headers=self.auth_header, code=2)
|
||||
payload = {'metrics': self._metrics_queue.copy(), 'type': 'metrics'}
|
||||
smart_request(f'{self.api_url}', json=payload, headers=self.auth_header, code=2)
|
||||
|
||||
def upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
|
||||
# Upload a model to HUB
|
||||
file = None
|
||||
if Path(weights).is_file():
|
||||
with open(weights, "rb") as f:
|
||||
with open(weights, 'rb') as f:
|
||||
file = f.read()
|
||||
if final:
|
||||
smart_request(
|
||||
f"{self.api_url}/upload",
|
||||
f'{self.api_url}/upload',
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"type": "final",
|
||||
"map": map},
|
||||
files={"best.pt": file},
|
||||
'epoch': epoch,
|
||||
'type': 'final',
|
||||
'map': map},
|
||||
files={'best.pt': file},
|
||||
headers=self.auth_header,
|
||||
retry=10,
|
||||
timeout=3600,
|
||||
|
|
@ -73,66 +73,66 @@ class HubTrainingSession:
|
|||
)
|
||||
else:
|
||||
smart_request(
|
||||
f"{self.api_url}/upload",
|
||||
f'{self.api_url}/upload',
|
||||
data={
|
||||
"epoch": epoch,
|
||||
"type": "epoch",
|
||||
"isBest": bool(is_best)},
|
||||
'epoch': epoch,
|
||||
'type': 'epoch',
|
||||
'isBest': bool(is_best)},
|
||||
headers=self.auth_header,
|
||||
files={"last.pt": file},
|
||||
files={'last.pt': file},
|
||||
code=3,
|
||||
)
|
||||
|
||||
def _get_model(self):
|
||||
# Returns model from database by id
|
||||
api_url = f"{HUB_API_ROOT}/v1/models/{self.model_id}"
|
||||
api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}'
|
||||
headers = self.auth_header
|
||||
|
||||
try:
|
||||
response = smart_request(api_url, method="get", headers=headers, thread=False, code=0)
|
||||
data = response.json().get("data", None)
|
||||
response = smart_request(api_url, method='get', headers=headers, thread=False, code=0)
|
||||
data = response.json().get('data', None)
|
||||
|
||||
if data.get("status", None) == "trained":
|
||||
if data.get('status', None) == 'trained':
|
||||
raise ValueError(
|
||||
emojis(f"Model is already trained and uploaded to "
|
||||
f"https://hub.ultralytics.com/models/{self.model_id} 🚀"))
|
||||
emojis(f'Model is already trained and uploaded to '
|
||||
f'https://hub.ultralytics.com/models/{self.model_id} 🚀'))
|
||||
|
||||
if not data.get("data", None):
|
||||
raise ValueError("Dataset may still be processing. Please wait a minute and try again.") # RF fix
|
||||
self.model_id = data["id"]
|
||||
if not data.get('data', None):
|
||||
raise ValueError('Dataset may still be processing. Please wait a minute and try again.') # RF fix
|
||||
self.model_id = data['id']
|
||||
|
||||
# TODO: restore when server keys when dataset URL and GPU train is working
|
||||
|
||||
self.train_args = {
|
||||
"batch": data["batch_size"],
|
||||
"epochs": data["epochs"],
|
||||
"imgsz": data["imgsz"],
|
||||
"patience": data["patience"],
|
||||
"device": data["device"],
|
||||
"cache": data["cache"],
|
||||
"data": data["data"]}
|
||||
'batch': data['batch_size'],
|
||||
'epochs': data['epochs'],
|
||||
'imgsz': data['imgsz'],
|
||||
'patience': data['patience'],
|
||||
'device': data['device'],
|
||||
'cache': data['cache'],
|
||||
'data': data['data']}
|
||||
|
||||
self.input_file = data.get("cfg", data["weights"])
|
||||
self.input_file = data.get('cfg', data['weights'])
|
||||
|
||||
# hack for yolov5 cfg adds u
|
||||
if "cfg" in data and "yolov5" in data["cfg"]:
|
||||
self.input_file = data["cfg"].replace(".yaml", "u.yaml")
|
||||
if 'cfg' in data and 'yolov5' in data['cfg']:
|
||||
self.input_file = data['cfg'].replace('.yaml', 'u.yaml')
|
||||
|
||||
return data
|
||||
except requests.exceptions.ConnectionError as e:
|
||||
raise ConnectionRefusedError("ERROR: The HUB server is not online. Please try again later.") from e
|
||||
raise ConnectionRefusedError('ERROR: The HUB server is not online. Please try again later.') from e
|
||||
except Exception:
|
||||
raise
|
||||
|
||||
def check_disk_space(self):
|
||||
if not check_dataset_disk_space(self.model["data"]):
|
||||
raise MemoryError("Not enough disk space")
|
||||
if not check_dataset_disk_space(self.model['data']):
|
||||
raise MemoryError('Not enough disk space')
|
||||
|
||||
def register_callbacks(self, trainer):
|
||||
trainer.add_callback("on_pretrain_routine_end", self.on_pretrain_routine_end)
|
||||
trainer.add_callback("on_fit_epoch_end", self.on_fit_epoch_end)
|
||||
trainer.add_callback("on_model_save", self.on_model_save)
|
||||
trainer.add_callback("on_train_end", self.on_train_end)
|
||||
trainer.add_callback('on_pretrain_routine_end', self.on_pretrain_routine_end)
|
||||
trainer.add_callback('on_fit_epoch_end', self.on_fit_epoch_end)
|
||||
trainer.add_callback('on_model_save', self.on_model_save)
|
||||
trainer.add_callback('on_train_end', self.on_train_end)
|
||||
|
||||
def on_pretrain_routine_end(self, trainer):
|
||||
"""
|
||||
|
|
@ -140,57 +140,57 @@ class HubTrainingSession:
|
|||
This method does not use trainer. It is passed to all callbacks by default.
|
||||
"""
|
||||
# Start timer for upload rate limit
|
||||
LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀")
|
||||
self._timers = {"metrics": time(), "ckpt": time()} # start timer on self.rate_limit
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀')
|
||||
self._timers = {'metrics': time(), 'ckpt': time()} # start timer on self.rate_limit
|
||||
|
||||
def on_fit_epoch_end(self, trainer):
|
||||
# Upload metrics after val end
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics}
|
||||
all_plots = {**trainer.label_loss_items(trainer.tloss, prefix='train'), **trainer.metrics}
|
||||
|
||||
if trainer.epoch == 0:
|
||||
model_info = {
|
||||
"model/parameters": get_num_params(trainer.model),
|
||||
"model/GFLOPs": round(get_flops(trainer.model), 3),
|
||||
"model/speed(ms)": round(trainer.validator.speed[1], 3)}
|
||||
'model/parameters': get_num_params(trainer.model),
|
||||
'model/GFLOPs': round(get_flops(trainer.model), 3),
|
||||
'model/speed(ms)': round(trainer.validator.speed[1], 3)}
|
||||
all_plots = {**all_plots, **model_info}
|
||||
self._metrics_queue[trainer.epoch] = json.dumps(all_plots)
|
||||
if time() - self._timers["metrics"] > self._rate_limits["metrics"]:
|
||||
if time() - self._timers['metrics'] > self._rate_limits['metrics']:
|
||||
self.upload_metrics()
|
||||
self._timers["metrics"] = time() # reset timer
|
||||
self._timers['metrics'] = time() # reset timer
|
||||
self._metrics_queue = {} # reset queue
|
||||
|
||||
def on_model_save(self, trainer):
|
||||
# Upload checkpoints with rate limiting
|
||||
is_best = trainer.best_fitness == trainer.fitness
|
||||
if time() - self._timers["ckpt"] > self._rate_limits["ckpt"]:
|
||||
LOGGER.info(f"{PREFIX}Uploading checkpoint {self.model_id}")
|
||||
if time() - self._timers['ckpt'] > self._rate_limits['ckpt']:
|
||||
LOGGER.info(f'{PREFIX}Uploading checkpoint {self.model_id}')
|
||||
self._upload_model(trainer.epoch, trainer.last, is_best)
|
||||
self._timers["ckpt"] = time() # reset timer
|
||||
self._timers['ckpt'] = time() # reset timer
|
||||
|
||||
def on_train_end(self, trainer):
|
||||
# Upload final model and metrics with exponential standoff
|
||||
LOGGER.info(f"{PREFIX}Training completed successfully ✅")
|
||||
LOGGER.info(f"{PREFIX}Uploading final {self.model_id}")
|
||||
LOGGER.info(f'{PREFIX}Training completed successfully ✅')
|
||||
LOGGER.info(f'{PREFIX}Uploading final {self.model_id}')
|
||||
|
||||
# hack for fetching mAP
|
||||
mAP = trainer.metrics.get("metrics/mAP50-95(B)", 0)
|
||||
mAP = trainer.metrics.get('metrics/mAP50-95(B)', 0)
|
||||
self._upload_model(trainer.epoch, trainer.best, map=mAP, final=True) # results[3] is mAP0.5:0.95
|
||||
self.alive = False # stop heartbeats
|
||||
LOGGER.info(f"{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀")
|
||||
LOGGER.info(f'{PREFIX}View model at https://hub.ultralytics.com/models/{self.model_id} 🚀')
|
||||
|
||||
def _upload_model(self, epoch, weights, is_best=False, map=0.0, final=False):
|
||||
# Upload a model to HUB
|
||||
file = None
|
||||
if Path(weights).is_file():
|
||||
with open(weights, "rb") as f:
|
||||
with open(weights, 'rb') as f:
|
||||
file = f.read()
|
||||
file_param = {"best.pt" if final else "last.pt": file}
|
||||
endpoint = f"{self.api_url}/upload"
|
||||
data = {"epoch": epoch}
|
||||
file_param = {'best.pt' if final else 'last.pt': file}
|
||||
endpoint = f'{self.api_url}/upload'
|
||||
data = {'epoch': epoch}
|
||||
if final:
|
||||
data.update({"type": "final", "map": map})
|
||||
data.update({'type': 'final', 'map': map})
|
||||
else:
|
||||
data.update({"type": "epoch", "isBest": bool(is_best)})
|
||||
data.update({'type': 'epoch', 'isBest': bool(is_best)})
|
||||
|
||||
smart_request(
|
||||
endpoint,
|
||||
|
|
@ -207,14 +207,14 @@ class HubTrainingSession:
|
|||
self.alive = True
|
||||
while self.alive:
|
||||
r = smart_request(
|
||||
f"{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}",
|
||||
f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
|
||||
json={
|
||||
"agent": AGENT_NAME,
|
||||
"agentId": self.agent_id},
|
||||
'agent': AGENT_NAME,
|
||||
'agentId': self.agent_id},
|
||||
headers=self.auth_header,
|
||||
retry=0,
|
||||
code=5,
|
||||
thread=False,
|
||||
)
|
||||
self.agent_id = r.json().get("data", {}).get("agentId", None)
|
||||
sleep(self._rate_limits["heartbeat"])
|
||||
self.agent_id = r.json().get('data', {}).get('agentId', None)
|
||||
sleep(self._rate_limits['heartbeat'])
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue