Add https://youtu.be/K69DUpSBNdA to docs (#18507)
This commit is contained in:
parent
7e4416f64f
commit
ed9fb82764
2 changed files with 20 additions and 22 deletions
|
|
@ -10,28 +10,16 @@ keywords: object counting, YOLO11, Ultralytics, real-time object detection, AI,
|
|||
|
||||
Object counting with [Ultralytics YOLO11](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLO11 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) capabilities.
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td align="center">
|
||||
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||
allowfullscreen>
|
||||
</iframe>
|
||||
<p align="center">
|
||||
<br>
|
||||
<strong>Watch:</strong> Object Counting using Ultralytics YOLOv8
|
||||
</td>
|
||||
<td align="center">
|
||||
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Fj9TStNBVoY"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
<strong>Watch:</strong> Class-wise Object Counting using Ultralytics YOLO11
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<strong>Watch:</strong> Class-wise Object Counting using Ultralytics YOLOv8
|
||||
</p>
|
||||
|
||||
## Advantages of Object Counting?
|
||||
|
||||
|
|
|
|||
|
|
@ -221,6 +221,16 @@ Furthermore, you can preview your model in real-time directly on your [iOS](http
|
|||
|
||||
After you [train a model](#train-model), you can export it to 13 different formats, including ONNX, OpenVINO, CoreML, [TensorFlow](https://www.ultralytics.com/glossary/tensorflow), Paddle and many others.
|
||||
|
||||
<p align="center">
|
||||
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/K69DUpSBNdA"
|
||||
title="YouTube video player" frameborder="0"
|
||||
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
||||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
<strong>Watch:</strong> How to Export the Ultralytics YOLO11 to ONNX, OpenVINO and Other Formats using Ultralytics HUB 🚀
|
||||
</p>
|
||||
|
||||

|
||||
|
||||
??? tip
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue