Explorer Cleanup (#7364)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Muhammad Rizwan Munawar <chr043416@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-07 01:31:41 +01:00 committed by GitHub
parent aca8eb1fd4
commit ed73c0fedc
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 585 additions and 63 deletions

View file

@ -44,6 +44,8 @@
</div>
</div>
以下是提供的内容的中文翻译:
## <div align="center">文档</div>
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训练、验证、预测和部署的完整文档。
@ -66,7 +68,7 @@ pip install ultralytics
<details open>
<summary>Usage</summary>
#### CLI
### CLI
YOLOv8 可以在命令行界面CLI中直接使用只需输入 `yolo` 命令:
@ -76,7 +78,7 @@ yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
`yolo` 可用于各种任务和模式,并接受其他参数,例如 `imgsz=640`。查看 YOLOv8 [CLI 文档](https://docs.ultralytics.com/usage/cli)以获取示例。
#### Python
### Python
YOLOv8 也可以在 Python 环境中直接使用,并接受与上述 CLI 示例中相同的[参数](https://docs.ultralytics.com/usage/cfg/)
@ -98,6 +100,18 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
</details>
### 笔记本
Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟踪等内容。每个笔记本都配有 [YouTube](https://youtube.com/ultralytics) 教程,使学习和实现高级 YOLOv8 功能变得简单。
| 文档 | 笔记本 | YouTube |
| ---------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 训练、验证、预测和导出模式</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB 快速开始</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 视频中的多对象跟踪</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 视频中的对象计数</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 视频中的热图</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
## <div align="center">模型</div>
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect)[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。