Integrate ByteTracker and BoT-SORT trackers (#788)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
parent
d99e04daa1
commit
ed6c54da7a
24 changed files with 1635 additions and 19 deletions
132
ultralytics/tracker/trackers/bot_sort.py
Normal file
132
ultralytics/tracker/trackers/bot_sort.py
Normal file
|
|
@ -0,0 +1,132 @@
|
|||
from collections import deque
|
||||
import numpy as np
|
||||
from ..utils import matching
|
||||
from ..utils.gmc import GMC
|
||||
from ..utils.kalman_filter import KalmanFilterXYWH
|
||||
from .byte_tracker import STrack, BYTETracker
|
||||
from .basetrack import TrackState
|
||||
|
||||
|
||||
class BOTrack(STrack):
|
||||
shared_kalman = KalmanFilterXYWH()
|
||||
|
||||
def __init__(self, tlwh, score, cls, feat=None, feat_history=50):
|
||||
super().__init__(tlwh, score, cls)
|
||||
|
||||
self.smooth_feat = None
|
||||
self.curr_feat = None
|
||||
if feat is not None:
|
||||
self.update_features(feat)
|
||||
self.features = deque([], maxlen=feat_history)
|
||||
self.alpha = 0.9
|
||||
|
||||
def update_features(self, feat):
|
||||
feat /= np.linalg.norm(feat)
|
||||
self.curr_feat = feat
|
||||
if self.smooth_feat is None:
|
||||
self.smooth_feat = feat
|
||||
else:
|
||||
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
|
||||
self.features.append(feat)
|
||||
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
|
||||
|
||||
def predict(self):
|
||||
mean_state = self.mean.copy()
|
||||
if self.state != TrackState.Tracked:
|
||||
mean_state[6] = 0
|
||||
mean_state[7] = 0
|
||||
|
||||
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
|
||||
|
||||
def re_activate(self, new_track, frame_id, new_id=False):
|
||||
if new_track.curr_feat is not None:
|
||||
self.update_features(new_track.curr_feat)
|
||||
super().re_activate(new_track, frame_id, new_id)
|
||||
|
||||
def update(self, new_track, frame_id):
|
||||
if new_track.curr_feat is not None:
|
||||
self.update_features(new_track.curr_feat)
|
||||
super().update(new_track, frame_id)
|
||||
|
||||
@property
|
||||
def tlwh(self):
|
||||
"""Get current position in bounding box format `(top left x, top left y,
|
||||
width, height)`.
|
||||
"""
|
||||
if self.mean is None:
|
||||
return self._tlwh.copy()
|
||||
ret = self.mean[:4].copy()
|
||||
ret[:2] -= ret[2:] / 2
|
||||
return ret
|
||||
|
||||
@staticmethod
|
||||
def multi_predict(stracks):
|
||||
if len(stracks) > 0:
|
||||
multi_mean = np.asarray([st.mean.copy() for st in stracks])
|
||||
multi_covariance = np.asarray([st.covariance for st in stracks])
|
||||
for i, st in enumerate(stracks):
|
||||
if st.state != TrackState.Tracked:
|
||||
multi_mean[i][6] = 0
|
||||
multi_mean[i][7] = 0
|
||||
multi_mean, multi_covariance = BOTrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
|
||||
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
|
||||
stracks[i].mean = mean
|
||||
stracks[i].covariance = cov
|
||||
|
||||
def convert_coords(self, tlwh):
|
||||
return self.tlwh_to_xywh(tlwh)
|
||||
|
||||
@staticmethod
|
||||
def tlwh_to_xywh(tlwh):
|
||||
"""Convert bounding box to format `(center x, center y, width,
|
||||
height)`.
|
||||
"""
|
||||
ret = np.asarray(tlwh).copy()
|
||||
ret[:2] += ret[2:] / 2
|
||||
return ret
|
||||
|
||||
|
||||
class BOTSORT(BYTETracker):
|
||||
|
||||
def __init__(self, args, frame_rate=30):
|
||||
super().__init__(args, frame_rate)
|
||||
# ReID module
|
||||
self.proximity_thresh = args.proximity_thresh
|
||||
self.appearance_thresh = args.appearance_thresh
|
||||
|
||||
if args.with_reid:
|
||||
# haven't supported bot-sort(reid) yet
|
||||
self.encoder = None
|
||||
# self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation])
|
||||
self.gmc = GMC(method=args.cmc_method)
|
||||
|
||||
def get_kalmanfilter(self):
|
||||
return KalmanFilterXYWH()
|
||||
|
||||
def init_track(self, dets, scores, cls, img=None):
|
||||
if len(dets) == 0:
|
||||
return []
|
||||
if self.args.with_reid and self.encoder is not None:
|
||||
features_keep = self.encoder.inference(img, dets)
|
||||
detections = [BOTrack(xyxy, s, c, f) for (xyxy, s, c, f) in zip(dets, scores, cls, features_keep)]
|
||||
else:
|
||||
detections = [BOTrack(xyxy, s, c) for (xyxy, s, c) in zip(dets, scores, cls)]
|
||||
return detections
|
||||
|
||||
def get_dists(self, tracks, detections):
|
||||
dists = matching.iou_distance(tracks, detections)
|
||||
dists_mask = (dists > self.proximity_thresh)
|
||||
|
||||
# TODO: mot20
|
||||
# if not self.args.mot20:
|
||||
dists = matching.fuse_score(dists, detections)
|
||||
|
||||
if self.args.with_reid and self.encoder is not None:
|
||||
emb_dists = matching.embedding_distance(tracks, detections) / 2.0
|
||||
emb_dists[emb_dists > self.appearance_thresh] = 1.0
|
||||
emb_dists[dists_mask] = 1.0
|
||||
dists = np.minimum(dists, emb_dists)
|
||||
return dists
|
||||
|
||||
def multi_predict(self, tracks):
|
||||
BOTrack.multi_predict(tracks)
|
||||
Loading…
Add table
Add a link
Reference in a new issue