ultralytics 8.0.58 new SimpleClass, fixes and updates (#1636)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
ef03e6732a
commit
ec10002a4a
30 changed files with 351 additions and 314 deletions
27
README.md
27
README.md
|
|
@ -58,7 +58,7 @@ full documentation on training, validation, prediction and deployment.
|
|||
<summary>Install</summary>
|
||||
|
||||
Pip install the ultralytics package including
|
||||
all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a
|
||||
all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a
|
||||
[**Python>=3.7**](https://www.python.org/) environment with
|
||||
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
|
||||
|
||||
|
|
@ -105,28 +105,11 @@ success = model.export(format="onnx") # export the model to ONNX format
|
|||
Ultralytics [release](https://github.com/ultralytics/assets/releases). See
|
||||
YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
|
||||
|
||||
#### Model Architectures
|
||||
|
||||
⭐ **NEW** YOLOv5u anchor free models are now available.
|
||||
|
||||
All supported model architectures can be found in the [Models](./ultralytics/models/) section.
|
||||
|
||||
#### Known Issues / TODOs
|
||||
|
||||
We are still working on several parts of YOLOv8! We aim to have these completed soon to bring the YOLOv8 feature set up
|
||||
to par with YOLOv5, including export and inference to all the same formats. We are also writing a YOLOv8 paper which we
|
||||
will submit to [arxiv.org](https://arxiv.org) once complete.
|
||||
|
||||
- [x] TensorFlow exports
|
||||
- [x] DDP resume
|
||||
- [ ] [arxiv.org](https://arxiv.org) paper
|
||||
|
||||
</details>
|
||||
|
||||
## <div align="center">Models</div>
|
||||
|
||||
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset,
|
||||
while Classification models are pretrained on the ImageNet dataset.
|
||||
All YOLOv8 pretrained models are available here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
|
||||
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
|
@ -147,7 +130,7 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|||
<br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0/cpu`
|
||||
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
@ -167,7 +150,7 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|||
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0/cpu`
|
||||
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
@ -187,7 +170,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
|
|||
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
||||
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0/cpu`
|
||||
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue