YOLOv8 architecture updates from R&D branch (#88)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5fbea25f0b
commit
ebd3cfb2fd
23 changed files with 720 additions and 570 deletions
|
|
@ -46,12 +46,11 @@ def attempt_load_weights(weights, device=None, inplace=True, fuse=True):
|
|||
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||
# Parse a YOLOv5 model.yaml dictionary
|
||||
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
||||
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
||||
nc, gd, gw, act = d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
||||
if act:
|
||||
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
||||
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
||||
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||
no = nc + 4 # number of outputs = classes + box
|
||||
|
||||
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||
|
|
@ -62,14 +61,14 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||
|
||||
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||
if m in {
|
||||
Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C3, C3TR,
|
||||
C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
||||
Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP,
|
||||
C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
|
||||
c1, c2 = ch[f], args[0]
|
||||
if c2 != no: # if not output
|
||||
c2 = make_divisible(c2 * gw, 8)
|
||||
|
||||
args = [c1, c2, *args[1:]]
|
||||
if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
|
||||
if m in {BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x}:
|
||||
args.insert(2, n) # number of repeats
|
||||
n = 1
|
||||
elif m is nn.BatchNorm2d:
|
||||
|
|
@ -79,8 +78,6 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||
# TODO: channel, gw, gd
|
||||
elif m in {Detect, Segment}:
|
||||
args.append([ch[x] for x in f])
|
||||
if isinstance(args[1], int): # number of anchors
|
||||
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||
if m is Segment:
|
||||
args[3] = make_divisible(args[3] * gw, 8)
|
||||
else:
|
||||
|
|
@ -88,9 +85,9 @@ def parse_model(d, ch): # model_dict, input_channels(3)
|
|||
|
||||
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
||||
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||
np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
||||
m.np = sum(x.numel() for x in m_.parameters()) # number params
|
||||
m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type
|
||||
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{m.np:10.0f} {t:<40}{str(args):<30}') # print
|
||||
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||
layers.append(m_)
|
||||
if i == 0:
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue