ultralytics 8.0.186 add Open Images V7 models (#5070)
This commit is contained in:
parent
a9033118cf
commit
eb976f5ad2
10 changed files with 152 additions and 96 deletions
|
|
@ -113,9 +113,9 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
|
||||
所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models)在首次使用时会自动从最新的Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)下载。
|
||||
|
||||
<details open><summary>检测</summary>
|
||||
<details open><summary>检测 (COCO)</summary>
|
||||
|
||||
查看 [检测文档](https://docs.ultralytics.com/tasks/detect/) 以获取使用这些模型的示例。
|
||||
查看[检测文档](https://docs.ultralytics.com/tasks/detect/)以获取这些在[COCO](https://docs.ultralytics.com/datasets/detect/coco/)上训练的模型的使用示例,其中包括80个预训练类别。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ------------------------------------------------------------------------------------ | --------------- | -------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
|
||||
|
|
@ -128,13 +128,32 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
|
||||
<br>通过 `yolo val detect data=coco.yaml device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
|
||||
<br>通过 `yolo val detect data=coco128.yaml batch=1 device=0|cpu` 复现
|
||||
<br>通过 `yolo val detect data=coco.yaml batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>分割</summary>
|
||||
<details><summary>检测(Open Image V7)</summary>
|
||||
|
||||
查看 [分割文档](https://docs.ultralytics.com/tasks/segment/) 以获取使用这些模型的示例。
|
||||
查看[检测文档](https://docs.ultralytics.com/tasks/detect/)以获取这些在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)上训练的模型的使用示例,其中包括600个预训练类别。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>验证<br>50-95 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>A100 TensorRT<br>(毫秒) | 参数<br><sup>(M) | 浮点运算<br><sup>(B) |
|
||||
| ----------------------------------------------------------------------------------------- | --------------- | ------------------- | --------------------------- | -------------------------------- | -------------- | ---------------- |
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
||||
|
||||
- **mAP<sup>验证</sup>** 值适用于在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)数据集上的单模型单尺度。
|
||||
<br>通过 `yolo val detect data=open-images-v7.yaml device=0` 以复现。
|
||||
- **速度** 在使用[Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)实例对COCO验证图像进行平均测算。
|
||||
<br>通过 `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu` 以复现。
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>分割 (COCO)</summary>
|
||||
|
||||
查看[分割文档](https://docs.ultralytics.com/tasks/segment/)以获取这些在[COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/)上训练的模型的使用示例,其中包括80个预训练类别。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| -------------------------------------------------------------------------------------------- | --------------- | -------------------- | --------------------- | --------------------------- | -------------------------------- | -------------- | ----------------- |
|
||||
|
|
@ -145,34 +164,15 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](http://cocodataset.org) 数据集上的结果。
|
||||
<br>通过 `yolo val segment data=coco.yaml device=0` 复现
|
||||
<br>通过 `yolo val segment data=coco-seg.yaml device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
|
||||
<br>通过 `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu` 复现
|
||||
<br>通过 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>分类</summary>
|
||||
<details><summary>姿态 (COCO)</summary>
|
||||
|
||||
查看 [分类文档](https://docs.ultralytics.com/tasks/classify/) 以获取使用这些模型的示例。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
| -------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | --------------------------- | -------------------------------- | -------------- | ------------------------ |
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||||
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
|
||||
- **acc** 值是模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。
|
||||
<br>通过 `yolo val classify data=path/to/ImageNet device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 ImageNet val 图像进行平均计算的。
|
||||
<br>通过 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>姿态</summary>
|
||||
|
||||
查看 [姿态文档](https://docs.ultralytics.com/tasks/) 以获取使用这些模型的示例。
|
||||
查看[姿态文档](https://docs.ultralytics.com/tasks/pose/)以获取这些在[COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/)上训练的模型的使用示例,其中包括1个预训练类别,即人。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| ---------------------------------------------------------------------------------------------------- | --------------- | --------------------- | ------------------ | --------------------------- | -------------------------------- | -------------- | ----------------- |
|
||||
|
|
@ -186,7 +186,26 @@ success = model.export(format="onnx") # 将模型导出为 ONNX 格式
|
|||
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO Keypoints val2017](http://cocodataset.org) 数据集上的结果。
|
||||
<br>通过 `yolo val pose data=coco-pose.yaml device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。
|
||||
<br>通过 `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu` 复现
|
||||
<br>通过 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
||||
<details><summary>分类 (ImageNet)</summary>
|
||||
|
||||
查看[分类文档](https://docs.ultralytics.com/tasks/classify/)以获取这些在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/)上训练的模型的使用示例,其中包括1000个预训练类别。
|
||||
|
||||
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
| -------------------------------------------------------------------------------------------- | --------------- | ---------------- | ---------------- | --------------------------- | -------------------------------- | -------------- | ------------------------ |
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||||
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
|
||||
- **acc** 值是模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。
|
||||
<br>通过 `yolo val classify data=path/to/ImageNet device=0` 复现
|
||||
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 ImageNet val 图像进行平均计算的。
|
||||
<br>通过 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue