ultralytics 8.1.40 search in Python sets {} for speed (#9450)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-04-01 00:16:52 +02:00 committed by GitHub
parent 30484d5925
commit ea527507fe
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
41 changed files with 97 additions and 93 deletions

View file

@ -159,7 +159,7 @@ class Exporter:
_callbacks (dict, optional): Dictionary of callback functions. Defaults to None.
"""
self.args = get_cfg(cfg, overrides)
if self.args.format.lower() in ("coreml", "mlmodel"): # fix attempt for protobuf<3.20.x errors
if self.args.format.lower() in {"coreml", "mlmodel"}: # fix attempt for protobuf<3.20.x errors
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" # must run before TensorBoard callback
self.callbacks = _callbacks or callbacks.get_default_callbacks()
@ -171,9 +171,9 @@ class Exporter:
self.run_callbacks("on_export_start")
t = time.time()
fmt = self.args.format.lower() # to lowercase
if fmt in ("tensorrt", "trt"): # 'engine' aliases
if fmt in {"tensorrt", "trt"}: # 'engine' aliases
fmt = "engine"
if fmt in ("mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"): # 'coreml' aliases
if fmt in {"mlmodel", "mlpackage", "mlprogram", "apple", "ios", "coreml"}: # 'coreml' aliases
fmt = "coreml"
fmts = tuple(export_formats()["Argument"][1:]) # available export formats
flags = [x == fmt for x in fmts]

View file

@ -145,7 +145,7 @@ class Model(nn.Module):
return
# Load or create new YOLO model
if Path(model).suffix in (".yaml", ".yml"):
if Path(model).suffix in {".yaml", ".yml"}:
self._new(model, task=task, verbose=verbose)
else:
self._load(model, task=task)
@ -666,7 +666,7 @@ class Model(nn.Module):
self.trainer.hub_session = self.session # attach optional HUB session
self.trainer.train()
# Update model and cfg after training
if RANK in (-1, 0):
if RANK in {-1, 0}:
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
self.model, _ = attempt_load_one_weight(ckpt)
self.overrides = self.model.args

View file

@ -470,7 +470,7 @@ class Boxes(BaseTensor):
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (6, 7), f"expected 6 or 7 values but got {n}" # xyxy, track_id, conf, cls
assert n in {6, 7}, f"expected 6 or 7 values but got {n}" # xyxy, track_id, conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 7
self.orig_shape = orig_shape
@ -687,7 +687,7 @@ class OBB(BaseTensor):
if boxes.ndim == 1:
boxes = boxes[None, :]
n = boxes.shape[-1]
assert n in (7, 8), f"expected 7 or 8 values but got {n}" # xywh, rotation, track_id, conf, cls
assert n in {7, 8}, f"expected 7 or 8 values but got {n}" # xywh, rotation, track_id, conf, cls
super().__init__(boxes, orig_shape)
self.is_track = n == 8
self.orig_shape = orig_shape

View file

@ -107,7 +107,7 @@ class BaseTrainer:
self.save_dir = get_save_dir(self.args)
self.args.name = self.save_dir.name # update name for loggers
self.wdir = self.save_dir / "weights" # weights dir
if RANK in (-1, 0):
if RANK in {-1, 0}:
self.wdir.mkdir(parents=True, exist_ok=True) # make dir
self.args.save_dir = str(self.save_dir)
yaml_save(self.save_dir / "args.yaml", vars(self.args)) # save run args
@ -121,7 +121,7 @@ class BaseTrainer:
print_args(vars(self.args))
# Device
if self.device.type in ("cpu", "mps"):
if self.device.type in {"cpu", "mps"}:
self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading
# Model and Dataset
@ -144,7 +144,7 @@ class BaseTrainer:
# Callbacks
self.callbacks = _callbacks or callbacks.get_default_callbacks()
if RANK in (-1, 0):
if RANK in {-1, 0}:
callbacks.add_integration_callbacks(self)
def add_callback(self, event: str, callback):
@ -251,7 +251,7 @@ class BaseTrainer:
# Check AMP
self.amp = torch.tensor(self.args.amp).to(self.device) # True or False
if self.amp and RANK in (-1, 0): # Single-GPU and DDP
if self.amp and RANK in {-1, 0}: # Single-GPU and DDP
callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them
self.amp = torch.tensor(check_amp(self.model), device=self.device)
callbacks.default_callbacks = callbacks_backup # restore callbacks
@ -274,7 +274,7 @@ class BaseTrainer:
# Dataloaders
batch_size = self.batch_size // max(world_size, 1)
self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train")
if RANK in (-1, 0):
if RANK in {-1, 0}:
# Note: When training DOTA dataset, double batch size could get OOM on images with >2000 objects.
self.test_loader = self.get_dataloader(
self.testset, batch_size=batch_size if self.args.task == "obb" else batch_size * 2, rank=-1, mode="val"
@ -340,7 +340,7 @@ class BaseTrainer:
self._close_dataloader_mosaic()
self.train_loader.reset()
if RANK in (-1, 0):
if RANK in {-1, 0}:
LOGGER.info(self.progress_string())
pbar = TQDM(enumerate(self.train_loader), total=nb)
self.tloss = None
@ -392,7 +392,7 @@ class BaseTrainer:
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1
losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
if RANK in (-1, 0):
if RANK in {-1, 0}:
pbar.set_description(
("%11s" * 2 + "%11.4g" * (2 + loss_len))
% (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])
@ -405,7 +405,7 @@ class BaseTrainer:
self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers
self.run_callbacks("on_train_epoch_end")
if RANK in (-1, 0):
if RANK in {-1, 0}:
final_epoch = epoch + 1 >= self.epochs
self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"])
@ -447,7 +447,7 @@ class BaseTrainer:
break # must break all DDP ranks
epoch += 1
if RANK in (-1, 0):
if RANK in {-1, 0}:
# Do final val with best.pt
LOGGER.info(
f"\n{epoch - self.start_epoch + 1} epochs completed in "
@ -503,12 +503,12 @@ class BaseTrainer:
try:
if self.args.task == "classify":
data = check_cls_dataset(self.args.data)
elif self.args.data.split(".")[-1] in ("yaml", "yml") or self.args.task in (
elif self.args.data.split(".")[-1] in {"yaml", "yml"} or self.args.task in {
"detect",
"segment",
"pose",
"obb",
):
}:
data = check_det_dataset(self.args.data)
if "yaml_file" in data:
self.args.data = data["yaml_file"] # for validating 'yolo train data=url.zip' usage
@ -740,7 +740,7 @@ class BaseTrainer:
else: # weight (with decay)
g[0].append(param)
if name in ("Adam", "Adamax", "AdamW", "NAdam", "RAdam"):
if name in {"Adam", "Adamax", "AdamW", "NAdam", "RAdam"}:
optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == "RMSProp":
optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum)

View file

@ -139,14 +139,14 @@ class BaseValidator:
self.args.batch = 1 # export.py models default to batch-size 1
LOGGER.info(f"Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models")
if str(self.args.data).split(".")[-1] in ("yaml", "yml"):
if str(self.args.data).split(".")[-1] in {"yaml", "yml"}:
self.data = check_det_dataset(self.args.data)
elif self.args.task == "classify":
self.data = check_cls_dataset(self.args.data, split=self.args.split)
else:
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌"))
if self.device.type in ("cpu", "mps"):
if self.device.type in {"cpu", "mps"}:
self.args.workers = 0 # faster CPU val as time dominated by inference, not dataloading
if not pt:
self.args.rect = False