Predictor support (#65)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
479992093c
commit
e6737f1207
22 changed files with 916 additions and 48 deletions
|
|
@ -1,5 +1,6 @@
|
|||
import contextlib
|
||||
import math
|
||||
import re
|
||||
import time
|
||||
|
||||
import cv2
|
||||
|
|
@ -374,3 +375,75 @@ def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
|||
if upsample:
|
||||
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||
return masks.gt_(0.5)
|
||||
|
||||
|
||||
def process_mask_native(protos, masks_in, bboxes, shape):
|
||||
"""
|
||||
Crop after upsample.
|
||||
protos: [mask_dim, mask_h, mask_w]
|
||||
masks_in: [n, mask_dim], n is number of masks after nms
|
||||
bboxes: [n, 4], n is number of masks after nms
|
||||
shape: input_image_size, (h, w)
|
||||
return: h, w, n
|
||||
"""
|
||||
c, mh, mw = protos.shape # CHW
|
||||
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
||||
gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
|
||||
pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding
|
||||
top, left = int(pad[1]), int(pad[0]) # y, x
|
||||
bottom, right = int(mh - pad[1]), int(mw - pad[0])
|
||||
masks = masks[:, top:bottom, left:right]
|
||||
|
||||
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
||||
masks = crop_mask(masks, bboxes) # CHW
|
||||
return masks.gt_(0.5)
|
||||
|
||||
|
||||
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
|
||||
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||
if ratio_pad is None: # calculate from img0_shape
|
||||
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||
else:
|
||||
gain = ratio_pad[0][0]
|
||||
pad = ratio_pad[1]
|
||||
|
||||
segments[:, 0] -= pad[0] # x padding
|
||||
segments[:, 1] -= pad[1] # y padding
|
||||
segments /= gain
|
||||
clip_segments(segments, img0_shape)
|
||||
if normalize:
|
||||
segments[:, 0] /= img0_shape[1] # width
|
||||
segments[:, 1] /= img0_shape[0] # height
|
||||
return segments
|
||||
|
||||
|
||||
def masks2segments(masks, strategy='largest'):
|
||||
# Convert masks(n,160,160) into segments(n,xy)
|
||||
segments = []
|
||||
for x in masks.int().cpu().numpy().astype('uint8'):
|
||||
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
||||
if c:
|
||||
if strategy == 'concat': # concatenate all segments
|
||||
c = np.concatenate([x.reshape(-1, 2) for x in c])
|
||||
elif strategy == 'largest': # select largest segment
|
||||
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
||||
else:
|
||||
c = np.zeros((0, 2)) # no segments found
|
||||
segments.append(c.astype('float32'))
|
||||
return segments
|
||||
|
||||
|
||||
def clip_segments(segments, shape):
|
||||
# Clip segments (xy1,xy2,...) to image shape (height, width)
|
||||
if isinstance(segments, torch.Tensor): # faster individually
|
||||
segments[:, 0].clamp_(0, shape[1]) # x
|
||||
segments[:, 1].clamp_(0, shape[0]) # y
|
||||
else: # np.array (faster grouped)
|
||||
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
|
||||
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
|
||||
|
||||
|
||||
def clean_str(s):
|
||||
# Cleans a string by replacing special characters with underscore _
|
||||
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue