Update docs predict, buttons, reference (#6585)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Glenn Jocher 2023-11-25 17:59:01 +01:00 committed by GitHub
parent a1ccdb00ed
commit e361194d7f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
141 changed files with 1044 additions and 828 deletions

View file

@ -44,35 +44,35 @@ Ultralytics YOLOv8 के समर्थित **मोड** को समझ
प्रशिक्षण मोड का उपयोग कस्टम डेटासेट पर YOLOv8 मॉडल के प्रशिक्षण के लिए किया जाता है। इस मोड में, मॉडल को निर्दिष्ट डेटासेट और हाइपरपैरामीटर का उपयोग करके प्रशिक्षित किया जाता है। प्रशिक्षण प्रक्रिया में, मॉडल के पैरामीटरों को अनुकूलित किया जाता है ताकि यह छवियों में ऑब्जेक्टों की कक्षाओं और स्थानों का सटीक पूर्वानुमान कर सके।
[प्रशिक्षण उदाहरण](train.md){ .md-button .md-button--primary}
[प्रशिक्षण उदाहरण](train.md){ .md-button }
## [पुष्टीकरण](val.md)
पुष्टीकरण मोड का उपयोग YOLOv8 मॉडल के प्रशिक्षण के बाद मॉडल की मान्यता और सामान्यीकरण प्रदर्शन को मापने के लिए किया जाता है। इस मोड में, मॉडल को एक प्रमाणीकरण सेट पर मूल्यांकन किया जाता है ताकि उसकी सटीकता और सामान्यीकरण प्रदर्शन को मापा जा सके। इस मोड का उपयोग मॉडल के प्रदर्शन को सुधारने के लिए मॉडल के हाइपरपैरामीटरों को ट्यून करने के लिए किया जा सकता है।
[पुष्टीकरण उदाहरण](val.md){ .md-button .md-button--primary}
[पुष्टीकरण उदाहरण](val.md){ .md-button }
## [पूर्वानुमान](predict.md)
पूर्वानुमान मोड का उपयोग नई छवियों या वीडियो पर प्रशिक्षित YOLOv8 मॉडल का उपयोग करके पूर्वानुमान बनाने के लिए किया जाता है। इस मोड में, मॉडल एक चेकप्वाइंट फ़ाइल से लोड किया जाता है, और उपयोगकर्ता छवियों या वीडियों को उपयोग करके इन्फेरेंस कर सकता है। मॉडल उपयोगकर्ता को इनपुट छवियों या वीडियों में ऑब्जेक्टों की कक्षाओं और स्थानों का पूर्वानुमान करता है।
[पूर्वानुमान उदाहरण](predict.md){ .md-button .md-button--primary}
[पूर्वानुमान उदाहरण](predict.md){ .md-button }
## [निर्यात](export.md)
निर्यात मोड का उपयोग एक YOLOv8 मॉडल को इस्तेमाल करने के लिए एक प्रारूप में करने के लिए किया जाता है जो कि अन्य सॉफ़्टवेयर अनुप्रयोगों या हार्डवेयर उपकरणों द्वारा इस्तेमाल किया जा सकता है। यह मोडल को उत्पादन उद्योगों में डिप्लॉय करने के लिए उपयोगी होता है।
[निर्यात उदाहरण](export.md){ .md-button .md-button--primary}
[निर्यात उदाहरण](export.md){ .md-button }
## [ट्रैक](track.md)
ट्रैक मोड का उपयोग एक YOLOv8 मॉडल का उपयोग करके वास्तविक समय में वस्तुओं का ट्रैकिंग करने के लिए किया जाता है। इस मोड में, मॉडल एक चेकप्वाइंट फ़ाइल से लोड किया जाता है, और उपयोगकर्ता एक लाइव वीडियो स्ट्रीम प्रदान कर सकता है ताकि वास्तविक समय में वस्तुओं का ट्रैकिंग किया जा सके। यह मोड सतर्कता प्रणालियों या स्वयं चालित कार जैसे अनुप्रयोगों के लिए उपयोगी होता है।
[ट्रैक उदाहरण](track.md){ .md-button .md-button--primary}
[ट्रैक उदाहरण](track.md){ .md-button }
## [बेंचमार्क](benchmark.md)
बेंचमार्क मोड का उपयोग YOLOv8 के विभिन्न निर्यात प्रारूपों की गति और सटीकता का प्रोफ़ाइल बनाने के लिए किया जाता है। बेंचमार्क से प्राप्त जानकारी निर्यात प्रारूप के आकार, उसकी `mAP50-95` metric (ऑब्जेक्ट डिटेक्शन, सेगमेंटेशन और पोज़ के लिए)
या `accuracy_top5` metric (वर्गीकरण के लिए), और चित्र माध्यमिक समय के मिलीसेकंड प्रति इमेज के अलग-अलग निर्यात प्रारूपों की जानकारी प्रदान करता है। यह जानकारी उपयोगकर्ताओं को उनकी विशेष उपयोग के मामले में उनकी खासियतों के लिए मिति और सटीकता के लिए सर्वोत्तम निर्यात प्रारूप का चयन करने में मदद कर सकती है।
[बेंचमार्क उदाहरण](benchmark.md){ .md-button .md-button--primary}
[बेंचमार्क उदाहरण](benchmark.md){ .md-button }