Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2025-01-07 10:12:58 +01:00 committed by GitHub
parent 96cd3895ff
commit e35cd0b490
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 5 additions and 9 deletions

View file

@ -8,7 +8,7 @@ keywords: Meituan YOLOv6, object detection, real-time applications, BiC module,
## Overview
[Meituan](https://about.meituan.com/) YOLOv6 is a cutting-edge object detector that offers remarkable balance between speed and accuracy, making it a popular choice for real-time applications. This model introduces several notable enhancements on its architecture and training scheme, including the implementation of a Bi-directional Concatenation (BiC) module, an anchor-aided training (AAT) strategy, and an improved backbone and neck design for state-of-the-art accuracy on the COCO dataset.
[Meituan](https://www.meituan.com/) YOLOv6 is a cutting-edge object detector that offers remarkable balance between speed and accuracy, making it a popular choice for real-time applications. This model introduces several notable enhancements on its architecture and training scheme, including the implementation of a Bi-directional Concatenation (BiC) module, an anchor-aided training (AAT) strategy, and an improved backbone and neck design for state-of-the-art accuracy on the COCO dataset.
![Meituan YOLOv6](https://github.com/ultralytics/docs/releases/download/0/meituan-yolov6.avif)
![Model example image](https://github.com/ultralytics/docs/releases/download/0/yolov6-architecture-diagram.avif) **Overview of YOLOv6.** Model architecture diagram showing the redesigned network components and training strategies that have led to significant performance improvements. (a) The neck of YOLOv6 (N and S are shown). Note for M/L, RepBlocks is replaced with CSPStackRep. (b) The structure of a BiC module. (c) A SimCSPSPPF block. ([source](https://arxiv.org/pdf/2301.05586.pdf)).