Model coverage cleanup (#4585)
This commit is contained in:
parent
c635418a27
commit
deac7575b1
12 changed files with 132 additions and 175 deletions
|
|
@ -51,32 +51,16 @@ class FastSAMPrompt:
|
|||
n = len(result.masks.data)
|
||||
for i in range(n):
|
||||
mask = result.masks.data[i] == 1.0
|
||||
|
||||
if torch.sum(mask) < filter:
|
||||
continue
|
||||
annotation = {
|
||||
'id': i,
|
||||
'segmentation': mask.cpu().numpy(),
|
||||
'bbox': result.boxes.data[i],
|
||||
'score': result.boxes.conf[i]}
|
||||
annotation['area'] = annotation['segmentation'].sum()
|
||||
annotations.append(annotation)
|
||||
if torch.sum(mask) >= filter:
|
||||
annotation = {
|
||||
'id': i,
|
||||
'segmentation': mask.cpu().numpy(),
|
||||
'bbox': result.boxes.data[i],
|
||||
'score': result.boxes.conf[i]}
|
||||
annotation['area'] = annotation['segmentation'].sum()
|
||||
annotations.append(annotation)
|
||||
return annotations
|
||||
|
||||
@staticmethod
|
||||
def filter_masks(annotations): # filter the overlap mask
|
||||
annotations.sort(key=lambda x: x['area'], reverse=True)
|
||||
to_remove = set()
|
||||
for i in range(len(annotations)):
|
||||
a = annotations[i]
|
||||
for j in range(i + 1, len(annotations)):
|
||||
b = annotations[j]
|
||||
if i != j and j not in to_remove and b['area'] < a['area'] and \
|
||||
(a['segmentation'] & b['segmentation']).sum() / b['segmentation'].sum() > 0.8:
|
||||
to_remove.add(j)
|
||||
|
||||
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
|
||||
|
||||
@staticmethod
|
||||
def _get_bbox_from_mask(mask):
|
||||
mask = mask.astype(np.uint8)
|
||||
|
|
@ -242,15 +226,12 @@ class FastSAMPrompt:
|
|||
cropped_images = []
|
||||
not_crop = []
|
||||
filter_id = []
|
||||
# annotations, _ = filter_masks(annotations)
|
||||
# filter_id = list(_)
|
||||
for _, mask in enumerate(annotations):
|
||||
if np.sum(mask['segmentation']) <= 100:
|
||||
filter_id.append(_)
|
||||
continue
|
||||
bbox = self._get_bbox_from_mask(mask['segmentation']) # mask 的 bbox
|
||||
cropped_boxes.append(self._segment_image(image, bbox)) # 保存裁剪的图片
|
||||
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
|
||||
cropped_images.append(bbox) # 保存裁剪的图片的bbox
|
||||
|
||||
return cropped_boxes, cropped_images, not_crop, filter_id, annotations
|
||||
|
|
|
|||
|
|
@ -267,10 +267,11 @@ class PositionEmbeddingRandom(nn.Module):
|
|||
super().__init__()
|
||||
if scale is None or scale <= 0.0:
|
||||
scale = 1.0
|
||||
self.register_buffer(
|
||||
'positional_encoding_gaussian_matrix',
|
||||
scale * torch.randn((2, num_pos_feats)),
|
||||
)
|
||||
self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats)))
|
||||
|
||||
# Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation'
|
||||
torch.use_deterministic_algorithms(False)
|
||||
torch.backends.cudnn.deterministic = False
|
||||
|
||||
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||
"""Positionally encode points that are normalized to [0,1]."""
|
||||
|
|
|
|||
|
|
@ -20,12 +20,14 @@ class Sam(nn.Module):
|
|||
mask_threshold: float = 0.0
|
||||
image_format: str = 'RGB'
|
||||
|
||||
def __init__(self,
|
||||
image_encoder: ImageEncoderViT,
|
||||
prompt_encoder: PromptEncoder,
|
||||
mask_decoder: MaskDecoder,
|
||||
pixel_mean: List[float] = None,
|
||||
pixel_std: List[float] = None) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
image_encoder: ImageEncoderViT,
|
||||
prompt_encoder: PromptEncoder,
|
||||
mask_decoder: MaskDecoder,
|
||||
pixel_mean: List[float] = (123.675, 116.28, 103.53),
|
||||
pixel_std: List[float] = (58.395, 57.12, 57.375)
|
||||
) -> None:
|
||||
"""
|
||||
SAM predicts object masks from an image and input prompts.
|
||||
|
||||
|
|
@ -37,10 +39,6 @@ class Sam(nn.Module):
|
|||
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||
"""
|
||||
if pixel_mean is None:
|
||||
pixel_mean = [123.675, 116.28, 103.53]
|
||||
if pixel_std is None:
|
||||
pixel_std = [58.395, 57.12, 57.375]
|
||||
super().__init__()
|
||||
self.image_encoder = image_encoder
|
||||
self.prompt_encoder = prompt_encoder
|
||||
|
|
|
|||
|
|
@ -30,40 +30,6 @@ class Conv2d_BN(torch.nn.Sequential):
|
|||
torch.nn.init.constant_(bn.bias, 0)
|
||||
self.add_module('bn', bn)
|
||||
|
||||
@torch.no_grad()
|
||||
def fuse(self):
|
||||
c, bn = self._modules.values()
|
||||
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
||||
w = c.weight * w[:, None, None, None]
|
||||
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
|
||||
m = torch.nn.Conv2d(w.size(1) * self.c.groups,
|
||||
w.size(0),
|
||||
w.shape[2:],
|
||||
stride=self.c.stride,
|
||||
padding=self.c.padding,
|
||||
dilation=self.c.dilation,
|
||||
groups=self.c.groups)
|
||||
m.weight.data.copy_(w)
|
||||
m.bias.data.copy_(b)
|
||||
return m
|
||||
|
||||
|
||||
# NOTE: This module and timm package is needed only for training.
|
||||
# from ultralytics.utils.checks import check_requirements
|
||||
# check_requirements('timm')
|
||||
# from timm.models.layers import DropPath as TimmDropPath
|
||||
# from timm.models.layers import trunc_normal_
|
||||
# class DropPath(TimmDropPath):
|
||||
#
|
||||
# def __init__(self, drop_prob=None):
|
||||
# super().__init__(drop_prob=drop_prob)
|
||||
# self.drop_prob = drop_prob
|
||||
#
|
||||
# def __repr__(self):
|
||||
# msg = super().__repr__()
|
||||
# msg += f'(drop_prob={self.drop_prob})'
|
||||
# return msg
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
|
||||
|
|
|
|||
|
|
@ -153,8 +153,7 @@ class Predictor(BasePredictor):
|
|||
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
||||
bboxes *= r
|
||||
if masks is not None:
|
||||
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device)
|
||||
masks = masks[:, None, :, :]
|
||||
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
|
||||
|
||||
points = (points, labels) if points is not None else None
|
||||
# Embed prompts
|
||||
|
|
@ -257,9 +256,7 @@ class Predictor(BasePredictor):
|
|||
pred_bbox = batched_mask_to_box(pred_mask).float()
|
||||
keep_mask = ~is_box_near_crop_edge(pred_bbox, crop_region, [0, 0, iw, ih])
|
||||
if not torch.all(keep_mask):
|
||||
pred_bbox = pred_bbox[keep_mask]
|
||||
pred_mask = pred_mask[keep_mask]
|
||||
pred_score = pred_score[keep_mask]
|
||||
pred_bbox, pred_mask, pred_score = pred_bbox[keep_mask], pred_mask[keep_mask], pred_score[keep_mask]
|
||||
|
||||
crop_masks.append(pred_mask)
|
||||
crop_bboxes.append(pred_bbox)
|
||||
|
|
@ -288,9 +285,7 @@ class Predictor(BasePredictor):
|
|||
if len(crop_regions) > 1:
|
||||
scores = 1 / region_areas
|
||||
keep = torchvision.ops.nms(pred_bboxes, scores, crop_nms_thresh)
|
||||
pred_masks = pred_masks[keep]
|
||||
pred_bboxes = pred_bboxes[keep]
|
||||
pred_scores = pred_scores[keep]
|
||||
pred_masks, pred_bboxes, pred_scores = pred_masks[keep], pred_bboxes[keep], pred_scores[keep]
|
||||
|
||||
return pred_masks, pred_scores, pred_bboxes
|
||||
|
||||
|
|
|
|||
|
|
@ -82,8 +82,7 @@ class DETRLoss(nn.Module):
|
|||
loss[name_giou] = 1.0 - bbox_iou(pred_bboxes, gt_bboxes, xywh=True, GIoU=True)
|
||||
loss[name_giou] = loss[name_giou].sum() / len(gt_bboxes)
|
||||
loss[name_giou] = self.loss_gain['giou'] * loss[name_giou]
|
||||
loss = {k: v.squeeze() for k, v in loss.items()}
|
||||
return loss
|
||||
return {k: v.squeeze() for k, v in loss.items()}
|
||||
|
||||
def _get_loss_mask(self, masks, gt_mask, match_indices, postfix=''):
|
||||
# masks: [b, query, h, w], gt_mask: list[[n, H, W]]
|
||||
|
|
@ -105,7 +104,8 @@ class DETRLoss(nn.Module):
|
|||
loss[name_dice] = self.loss_gain['dice'] * self._dice_loss(src_masks, target_masks, num_gts)
|
||||
return loss
|
||||
|
||||
def _dice_loss(self, inputs, targets, num_gts):
|
||||
@staticmethod
|
||||
def _dice_loss(inputs, targets, num_gts):
|
||||
inputs = F.sigmoid(inputs)
|
||||
inputs = inputs.flatten(1)
|
||||
targets = targets.flatten(1)
|
||||
|
|
@ -163,7 +163,8 @@ class DETRLoss(nn.Module):
|
|||
# loss[f'loss_dice_aux{postfix}'] = loss[4]
|
||||
return loss
|
||||
|
||||
def _get_index(self, match_indices):
|
||||
@staticmethod
|
||||
def _get_index(match_indices):
|
||||
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(match_indices)])
|
||||
src_idx = torch.cat([src for (src, _) in match_indices])
|
||||
dst_idx = torch.cat([dst for (_, dst) in match_indices])
|
||||
|
|
@ -257,10 +258,10 @@ class RTDETRDetectionLoss(DETRLoss):
|
|||
dn_pos_idx, dn_num_group = dn_meta['dn_pos_idx'], dn_meta['dn_num_group']
|
||||
assert len(batch['gt_groups']) == len(dn_pos_idx)
|
||||
|
||||
# denoising match indices
|
||||
# Denoising match indices
|
||||
match_indices = self.get_dn_match_indices(dn_pos_idx, dn_num_group, batch['gt_groups'])
|
||||
|
||||
# compute denoising training loss
|
||||
# Compute denoising training loss
|
||||
dn_loss = super().forward(dn_bboxes, dn_scores, batch, postfix='_dn', match_indices=match_indices)
|
||||
total_loss.update(dn_loss)
|
||||
else:
|
||||
|
|
@ -270,7 +271,8 @@ class RTDETRDetectionLoss(DETRLoss):
|
|||
|
||||
@staticmethod
|
||||
def get_dn_match_indices(dn_pos_idx, dn_num_group, gt_groups):
|
||||
"""Get the match indices for denoising.
|
||||
"""
|
||||
Get the match indices for denoising.
|
||||
|
||||
Args:
|
||||
dn_pos_idx (List[torch.Tensor]): A list includes positive indices of denoising.
|
||||
|
|
@ -279,7 +281,6 @@ class RTDETRDetectionLoss(DETRLoss):
|
|||
|
||||
Returns:
|
||||
dn_match_indices (List(tuple)): Matched indices.
|
||||
|
||||
"""
|
||||
dn_match_indices = []
|
||||
idx_groups = torch.as_tensor([0, *gt_groups[:-1]]).cumsum_(0)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue