ultralytics 8.0.177 add https://youtube.com/ultralytics videos to Docs (#4875)

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Muhammad Rizwan Munawar <62513924+RizwanMunawar@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-09-13 20:42:50 +02:00 committed by GitHub
parent e73447effb
commit dd2262e89a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
30 changed files with 453 additions and 161 deletions

View file

@ -4,11 +4,40 @@ description: Step-by-step guide on exporting your YOLOv8 models to various forma
keywords: YOLO, YOLOv8, Ultralytics, Model export, ONNX, TensorRT, CoreML, TensorFlow SavedModel, OpenVINO, PyTorch, export model
---
# Model Export with Ultralytics YOLO
<img width="1024" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png">
**Export mode** is used for exporting a YOLOv8 model to a format that can be used for deployment. In this mode, the
model is converted to a format that can be used by other software applications or hardware devices. This mode is useful
when deploying the model to production environments.
## Introduction
The ultimate goal of training a model is to deploy it for real-world applications. Export mode in Ultralytics YOLOv8 offers a versatile range of options for exporting your trained model to different formats, making it deployable across various platforms and devices. This comprehensive guide aims to walk you through the nuances of model exporting, showcasing how to achieve maximum compatibility and performance.
<p align="center">
<br>
<iframe width="720" height="405" src="https://www.youtube.com/embed/WbomGeoOT_k?si=aGmuyooWftA0ue9X"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> How To Export Custom Trained Ultralytics YOLOv8 Model and Run Live Inference on Webcam.
</p>
## Why Choose YOLOv8's Export Mode?
- **Versatility:** Export to multiple formats including ONNX, TensorRT, CoreML, and more.
- **Performance:** Gain up to 5x GPU speedup with TensorRT and 3x CPU speedup with ONNX or OpenVINO.
- **Compatibility:** Make your model universally deployable across numerous hardware and software environments.
- **Ease of Use:** Simple CLI and Python API for quick and straightforward model exporting.
### Key Features of Export Mode
Here are some of the standout functionalities:
- **One-Click Export:** Simple commands for exporting to different formats.
- **Batch Export:** Export batched-inference capable models.
- **Optimized Inference:** Exported models are optimized for quicker inference times.
- **Tutorial Videos:** In-depth guides and tutorials for a smooth exporting experience.
!!! tip "Tip"
@ -17,8 +46,7 @@ when deploying the model to production environments.
## Usage Examples
Export a YOLOv8n model to a different format like ONNX or TensorRT. See Arguments section below for a full list of
export arguments.
Export a YOLOv8n model to a different format like ONNX or TensorRT. See Arguments section below for a full list of export arguments.
!!! example ""
@ -43,14 +71,7 @@ export arguments.
## Arguments
Export settings for YOLO models refer to the various configurations and options used to save or
export the model for use in other environments or platforms. These settings can affect the model's performance, size,
and compatibility with different systems. Some common YOLO export settings include the format of the exported model
file (e.g. ONNX, TensorFlow SavedModel), the device on which the model will be run (e.g. CPU, GPU), and the presence of
additional features such as masks or multiple labels per box. Other factors that may affect the export process include
the specific task the model is being used for and the requirements or constraints of the target environment or platform.
It is important to carefully consider and configure these settings to ensure that the exported model is optimized for
the intended use case and can be used effectively in the target environment.
Export settings for YOLO models refer to the various configurations and options used to save or export the model for use in other environments or platforms. These settings can affect the model's performance, size, and compatibility with different systems. Some common YOLO export settings include the format of the exported model file (e.g. ONNX, TensorFlow SavedModel), the device on which the model will be run (e.g. CPU, GPU), and the presence of additional features such as masks or multiple labels per box. Other factors that may affect the export process include the specific task the model is being used for and the requirements or constraints of the target environment or platform. It is important to carefully consider and configure these settings to ensure that the exported model is optimized for the intended use case and can be used effectively in the target environment.
| Key | Value | Description |
|-------------|-----------------|------------------------------------------------------|
@ -68,8 +89,7 @@ the intended use case and can be used effectively in the target environment.
## Export Formats
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument,
i.e. `format='onnx'` or `format='engine'`.
Available YOLOv8 export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`.
| Format | `format` Argument | Model | Metadata | Arguments |
|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|