Simplify thop imports (#18717)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
c6dd277493
commit
daaebba220
5 changed files with 6 additions and 17 deletions
|
|
@ -567,7 +567,7 @@ class HUBDatasetStats:
|
|||
|
||||
# Get dataset statistics
|
||||
if self.task == "classify":
|
||||
from torchvision.datasets import ImageFolder
|
||||
from torchvision.datasets import ImageFolder # scope for faster 'import ultralytics'
|
||||
|
||||
dataset = ImageFolder(self.data[split])
|
||||
|
||||
|
|
|
|||
|
|
@ -839,7 +839,7 @@ class Results(SimpleClass):
|
|||
>>> df_result = results[0].to_df()
|
||||
>>> print(df_result)
|
||||
"""
|
||||
import pandas as pd
|
||||
import pandas as pd # scope for faster 'import ultralytics'
|
||||
|
||||
return pd.DataFrame(self.summary(normalize=normalize, decimals=decimals))
|
||||
|
||||
|
|
|
|||
|
|
@ -1131,7 +1131,7 @@ class TorchVision(nn.Module):
|
|||
|
||||
def __init__(self, c1, c2, model, weights="DEFAULT", unwrap=True, truncate=2, split=False):
|
||||
"""Load the model and weights from torchvision."""
|
||||
import torchvision
|
||||
import torchvision # scope for faster 'import ultralytics'
|
||||
|
||||
super().__init__()
|
||||
if hasattr(torchvision.models, "get_model"):
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@ import types
|
|||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
|
||||
import thop
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
|
@ -86,11 +87,6 @@ from ultralytics.utils.torch_utils import (
|
|||
time_sync,
|
||||
)
|
||||
|
||||
try:
|
||||
import thop
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
|
||||
class BaseModel(nn.Module):
|
||||
"""The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family."""
|
||||
|
|
|
|||
|
|
@ -12,6 +12,7 @@ from pathlib import Path
|
|||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import thop
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
|
@ -30,11 +31,6 @@ from ultralytics.utils import (
|
|||
)
|
||||
from ultralytics.utils.checks import check_version
|
||||
|
||||
try:
|
||||
import thop
|
||||
except ImportError:
|
||||
thop = None
|
||||
|
||||
# Version checks (all default to version>=min_version)
|
||||
TORCH_1_9 = check_version(torch.__version__, "1.9.0")
|
||||
TORCH_1_13 = check_version(torch.__version__, "1.13.0")
|
||||
|
|
@ -367,9 +363,6 @@ def model_info_for_loggers(trainer):
|
|||
|
||||
def get_flops(model, imgsz=640):
|
||||
"""Return a YOLO model's FLOPs."""
|
||||
if not thop:
|
||||
return 0.0 # if not installed return 0.0 GFLOPs
|
||||
|
||||
try:
|
||||
model = de_parallel(model)
|
||||
p = next(model.parameters())
|
||||
|
|
@ -674,7 +667,7 @@ def profile(input, ops, n=10, device=None, max_num_obj=0):
|
|||
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
|
||||
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
|
||||
try:
|
||||
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs
|
||||
flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 # GFLOPs
|
||||
except Exception:
|
||||
flops = 0
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue